Product Description
DOT/CE/BV/ISO/SGS/TPED approval 2L/5L/7L/8L/10/14L/20L portable gas cylinders fill with oxygen gas, argon gas, co2 gas, helium gas, mixture gases ,etc.
Type | (mm) Outside Diameter |
(L) Water Capacity |
(mm) () Height (Withoutvalve) |
(Kg) (,) Weight(Without valve,cap) |
(Mpa) Working Pressure |
(mm) Design Wall Thickness |
Material Grades |
ISO102-1.8-150 | 102 | 1.8 | 325 | 3.5 | 150 | 3 | 37Mn |
ISO102-3-150 | 3 | 498 | 5.2 | ||||
ISO102-3.4-150 | 3.4 | 555 | 5.7 | ||||
ISO102-4.4-150 | 4.4 | 700 | 7.2 | ||||
ISO108-1.4-150 | 108 | 1.4 | 240 | 2.9 | 150 | 3.2 | 37Mn |
ISO108-1.8-150 | 1.8 | 285 | 3.3 | ||||
ISO108-2-150 | 2 | 310 | 3.6 | ||||
ISO108-3-150 | 3 | 437 | 4.9 | ||||
ISO108-3.6-150 | 3.6 | 515 | 5.7 | ||||
ISO108-4-150 | 4 | 565 | 6.2 | ||||
ISO108-5-150 | 5 | 692 | 7.5 | ||||
ISO140-3.4-150 | 140 | 3.4 | 321 | 5.8 | 150 | 4.1 | 37Mn |
ISO140-4-150 | 4 | 365 | 6.4 | ||||
ISO140-5-150 | 5 | 440 | 7.6 | ||||
ISO140-6-150 | 6 | 515 | 8.8 | ||||
ISO140-6.3-150 | 6.3 | 545 | 9.2 | ||||
ISO140-6.7-150 | 6.7 | 567 | 9.5 | ||||
ISO140-7-150 | 7 | 595 | 9.9 | ||||
ISO140-7.5-150 | 7.5 | 632 | 10.5 | ||||
ISO140-8-150 | 8 | 665 | 11 | ||||
ISO140-9-150 | 9 | 745 | 12.2 | ||||
ISO140-10-150 | 10 | 830 | 13.5 | ||||
ISO140-11-150 | 11 | 885 | 14.3 | ||||
ISO140-13.4-150 | 13.4 | 1070 | 17.1 | ||||
ISO140-14-150 | 14 | 1115 | 17.7 | ||||
ISO159-7-150 | 159 | 7 | 495 | 9.8 | 150 | 4.7 | 37Mn |
ISO159-8-150 | 8 | 554 | 10.8 | ||||
ISO159-9-150 | 9 | 610 | 11.7 | ||||
ISO159-10-150 | 10 | 665 | 12.7 | ||||
ISO159-11-150 | 11 | 722 | 13.7 | ||||
ISO159-12-150 | 12 | 790 | 14.8 | ||||
ISO159-12.5-150 | 12.5 | 802 | 15 | ||||
ISO159-13-150 | 13 | 833 | 15.6 | ||||
ISO159-13.4-150 | 13.4 | 855 | 16 | ||||
ISO159-13.7-150 | 13.7 | 878 | 16.3 | ||||
ISO159-14-150 | 14 | 890 | 16.5 | ||||
ISO159-15-150 | 15 | 945 | 17.5 | ||||
ISO159-16-150 | 16 | 1000 | 18.4 | ||||
ISO180-8-150 | 180 | 8 | 480 | 13.8 | 150 | 5.3 | 37Mn |
ISO180-10-150 | 10 | 570 | 16.1 | ||||
ISO180-12-150 | 12 | 660 | 18.3 | ||||
ISO180-15-150 | 15 | 790 | 21.6 | ||||
ISO180-20-150 | 20 | 1015 | 27.2 | ||||
ISO180-21-150 | 21 | 1061 | 28.3 | ||||
ISO180-21.6-150 | 21.6 | 1087 | 29 | ||||
ISO180-22.3-150 | 22.3 | 1100 | 29.4 | ||||
ISO219-20-150 | 219 | 20 | 705 | 27.8 | 150 | 6.1 | 37Mn |
ISO219-25-150 | 25 | 855 | 32.8 | ||||
ISO219-27-150 | 27 | 915 | 34.8 | ||||
ISO219-36-150 | 36 | 1185 | 43.9 | ||||
ISO219-38-150 | 38 | 1245 | 45.9 | ||||
ISO219-40-150 | 40 | 1305 | 47.8 | ||||
ISO219-45-150 | 45 | 1455 | 52.9 | ||||
ISO219-46.7-150 | 46.7 | 1505 | 54.6 | ||||
ISO219-50-150 | 50 | 1605 | 57.9 |
RECORD OF HYDROSTATIC TESTS ON CYLINDERS Time≥ 60S | ||||||||
S.N | Serial No. | The weight without valve&cap(kg) | Volumetric Capacity(L) | Total expansion(ml) | Permanent expansion(ml) | Percent of Permanent to totalexpanison(%) | Test Pressure 250Bar | Lot and Batch No. |
1 | 20T164001 | 18 | 14.2 | 74.1 | 0.9 | 1.2 | 25 | T09 |
2 | 20T164002 | 17.8 | 14.3 | 69.0 | 1 | 1.4 | 25 | T09 |
3 | 20T164003 | 17.9 | 14.2 | 74.1 | 1 | 1.4 | 25 | T09 |
4 | 20T164004 | 17.7 | 14.3 | 70.9 | 0.9 | 1.3 | 25 | T09 |
5 | 20T164005 | 18.2 | 14.3 | 69.0 | 0.9 | 1.3 | 25 | T09 |
6 | 20T164006 | 17.6 | 14.2 | 70.1 | 0.9 | 1.3 | 25 | T09 |
7 | 20T164007 | 18.3 | 14.2 | 71.1 | 1 | 1.4 | 25 | T09 |
8 | 20T164008 | 18.2 | 14.3 | 72.9 | 0.8 | 1.1 | 25 | T09 |
9 | 20T164009 | 17.5 | 14.3 | 69.0 | 0.9 | 1.3 | 25 | T09 |
10 | 20T164571 | 17.8 | 14.2 | 73.1 | 0.9 | 1.2 | 25 | T09 |
11 | 20T164011 | 18 | 14 | 71.4 | 1 | 1.4 | 25 | T09 |
12 | 20T164012 | 17.8 | 14.2 | 74.1 | 0.7 | 0.9 | 25 | T09 |
13 | 20T164013 | 18.6 | 14.2 | 71.1 | 1 | 1.4 | 25 | T09 |
14 | 20T164014 | 17.6 | 14.3 | 70.0 | 1 | 1.4 | 25 | T09 |
15 | 20T164015 | 17.9 | 14.1 | 72.2 | 0.8 | 1.1 | 25 | T09 |
16 | 20T164016 | 17.9 | 14.3 | 68.0 | 1 | 1.5 | 25 | T09 |
17 | 20T164017 | 18.1 | 14.2 | 74.1 | 0.8 | 1.1 | 25 | T09 |
18 | 20T164018 | 17.7 | 14.3 | 69.0 | 0.7 | 1.0 | 25 | T09 |
19 | 20T164019 | 17.7 | 14.3 | 70.0 | 0.7 | 1.0 | 25 | T09 |
20 | 20T164571 | 17.8 | 14.2 | 69.1 | 0.8 | 1.2 | 25 | T09 |
21 | 20T164571 | 17.7 | 14.3 | 72.9 | 0.7 | 1.0 | 25 | T09 |
22 | 20T164571 | 17.9 | 14.2 | 71.1 | 0.8 | 1.1 | 25 | T09 |
23 | 20T164571 | 18 | 14.2 | 69.1 | 0.7 | 1.0 | 25 | T09 |
24 | 20T164571 | 17.7 | 14.3 | 72.9 | 0.7 | 1.0 | 25 | T09 |
25 | 20T164571 | 17.8 | 14.3 | 71.9 | 1.2 | 1.7 | 25 | T09 |
26 | 20T164026 | 17.9 | 14.1 | 70.2 | 1 | 1.4 | 25 | T09 |
27 | 20T164571 | 17.8 | 14.2 | 73.1 | 0.7 | 1.0 | 25 | T09 |
28 | 20T164571 | 17.8 | 14.3 | 70.0 | 0.8 | 1.1 | 25 | T09 |
29 | 20T164571 | 17.8 | 14.2 | 71.1 | 1.2 | 1.7 | 25 | T09 |
30 | 20T164030 | 17.8 | 14.2 | 68.1 | 0.9 | 1.3 | 25 | T09 |
31 | 20T164031 | 17.7 | 14.3 | 72.9 | 0.9 | 1.2 | 25 | T09 |
32 | 20T164032 | 17.6 | 14.2 | 70.1 | 1 | 1.4 | 25 | T09 |
33 | 20T164033 | 17.8 | 14.2 | 74.1 | 1 | 1.4 | 25 | T09 |
34 | 20T164034 | 18 | 14 | 74.4 | 0.9 | 1.2 | 25 | T09 |
35 | 20T164035 | 17.8 | 14.2 | 70.1 | 0.9 | 1.3 | 25 | T09 |
36 | 20T164036 | 17.9 | 14.1 | 71.2 | 0.9 | 1.3 | 25 | T09 |
37 | 20T164037 | 17.9 | 14.3 | 70.0 | 1 | 1.4 | 25 | T09 |
38 | 20T164038 | 17.8 | 14.2 | 74.1 | 0.8 | 1.1 | 25 | T09 |
39 | 20T164039 | 17.9 | 14.1 | 71.2 | 0.9 | 1.3 | 25 | T09 |
40 | 20T164040 | 17.7 | 14.3 | 71.9 | 0.9 | 1.3 | 25 | T09 |
41 | 20T164041 | 17.8 | 14.2 | 69.1 | 1 | 1.4 | 25 | T09 |
42 | 20T164042 | 18 | 14.2 | 74.1 | 0.7 | 0.9 | 25 | T09 |
43 | 20T164043 | 18.4 | 14.2 | 71.1 | 1 | 1.4 | 25 | T09 |
44 | 20T164044 | 17.6 | 14.4 | 68.8 | 1 | 1.5 | 25 | T09 |
45 | 20T164045 | 17.8 | 14.2 | 71.1 | 0.8 | 1.1 | 25 | T09 |
46 | 20T164046 | 17.9 | 14.1 | 70.2 | 1 | 1.4 | 25 | T09 |
47 | 20T164047 | 17.8 | 14.2 | 74.1 | 0.8 | 1.1 | 25 | T09 |
48 | 20T164048 | 18 | 14.2 | 70.1 | 0.7 | 1.0 | 25 | T09 |
49 | 20T164049 | 17.9 | 14.1 | 72.2 | 0.7 | 1.0 | 25 | T09 |
50 | 20T164050 | 17.8 | 14.2 | 69.1 | 0.8 | 1.2 | 25 | T09 |
Established in 1998. Our company possesses 3 production lines for production of various seamless gas cylinders. The annual production and sale for gas cylinders of below 20L for 600 thousand pieces, accounting for 90% domestic share in small size gas cylinder market. The recently set up new production line for 0.4L-80L emergency respirator, colliery escape capsule and refuge chamber has the annual production of 700 thousand pieces of cylinders. By the year 2013, the total specifications we do ascent to 109 types to meet different customers’ requirement.
Our major products are oxygen cylinder, nitrogen cylinder, carbon dioxide cylinder, argon cylinder, other industrial cylinder, medical oxygen supply unit, etc., with wide application for fields of medical apparatus and instruments, engineering machinery, colliery rescue, gas industry, welding-cutting machinery, and chemical industry. Our cryogenic vessels production line mainly produce cryogenic liquid storage tanks, welding insulation cylinders, cryogenic reaction device, cryogenic tanks, cryogenic ISO tank container and air temperature vaporizer.
So far our products are enjoying good markets at home and exporting to European and American countries, the Middle East countries, West Asia, as well as South and East Asia countries.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Material: | Steel |
---|---|
Usage: | Oxygen |
Structure: | General Cylinder |
Power: | Hydraulic |
Standard: | Standard |
Pressure Direction: | Single-acting Cylinder |
Customization: |
Available
|
|
---|
Can hydraulic cylinders be retrofitted onto existing equipment for improved functionality?
Yes, hydraulic cylinders can be retrofitted onto existing equipment to enhance functionality and performance. Retrofitting hydraulic cylinders onto existing machinery or equipment offers several benefits, including increased power, improved control, enhanced precision, and versatility. Here’s a detailed explanation of how hydraulic cylinders can be retrofitted onto existing equipment for improved functionality:
1. Increased Power:
– Retrofitting hydraulic cylinders allows for the addition of hydraulic power to the existing equipment. By integrating hydraulic cylinders, the equipment can generate higher forces and handle heavier loads. This increased power enables the equipment to perform tasks that were previously challenging or impossible. For example, a retrofit hydraulic cylinder on a crane can enhance its lifting capacity and enable it to handle heavier loads more efficiently.
2. Improved Control:
– Hydraulic cylinders provide precise control over the motion and positioning of equipment. By retrofitting hydraulic cylinders, operators gain better control over the speed, force, and direction of movement. The addition of hydraulic control valves and a hydraulic power unit allows for fine-tuning of the equipment’s operation. Improved control facilitates safer and more efficient operation, reducing the risk of damage and improving overall productivity.
3. Enhanced Precision:
– Retrofitting hydraulic cylinders onto existing equipment can significantly improve precision and accuracy. Hydraulic systems offer precise control over movement, enabling smooth and controlled motion. This enhanced precision is beneficial in applications where precise positioning or repetitive movements are required. For instance, retrofitting hydraulic cylinders onto a robotic arm can enhance its accuracy and repeatability, making it more suitable for tasks that demand high precision.
4. Versatility and Adaptability:
– Retrofitting hydraulic cylinders can increase the versatility and adaptability of existing equipment. Hydraulic systems can be easily integrated with various types of machinery, allowing for the utilization of hydraulic power across different applications. The modular nature of hydraulic components facilitates the retrofitting process, enabling the equipment to perform a broader range of tasks. This versatility is particularly advantageous in industries where equipment needs to adapt to changing operational requirements.
5. Retrofit Kits and Customization:
– Manufacturers often provide retrofit kits that include all the necessary components for integrating hydraulic cylinders onto existing equipment. These kits typically consist of hydraulic cylinders, mounting brackets, hoses, fittings, control valves, and other required accessories. Retrofit kits simplify the retrofitting process and ensure compatibility between the hydraulic components and the existing equipment. Additionally, manufacturers can offer customization options to tailor the retrofit solution to specific equipment and application needs.
6. Cost-Effective Solution:
– Retrofitting hydraulic cylinders onto existing equipment can be a cost-effective solution compared to purchasing new machinery. By leveraging the existing equipment’s structural framework and mechanical components, the overall cost of upgrading can be reduced. Retrofitting also minimizes downtime since the equipment does not need to be completely replaced. Furthermore, the improved functionality and performance resulting from the retrofit can lead to increased productivity and cost savings in the long run.
7. Professional Installation and Expertise:
– Retrofitting hydraulic cylinders onto existing equipment often requires professional installation and expertise. Working with experienced hydraulic system integrators or manufacturers ensures proper installation, compatibility, and optimal performance of the retrofit solution. These professionals can assess the existing equipment, recommend suitable hydraulic components, and carry out the retrofitting process efficiently. Their knowledge and expertise contribute to the successful integration of hydraulic cylinders and the overall improvement of equipment functionality.
In summary, hydraulic cylinders can indeed be retrofitted onto existing equipment to improve functionality. This retrofitting process offers advantages such as increased power, improved control, enhanced precision, versatility, cost-effectiveness, and access to retrofit kits and customization options. By retrofitting hydraulic cylinders, existing equipment can be upgraded to meet evolving operational needs, extend its lifespan, and enhance overall performance.
What considerations are important when selecting hydraulic cylinders for mobile equipment?
To select hydraulic cylinders for mobile equipment, several important considerations need to be taken into account. Here are the key factors to consider:
- Load Capacity: Determine the maximum load or force that the hydraulic cylinder will need to support. This includes both the static load and any dynamic or shock loads that may be encountered during operation.
- Stroke Length: Consider the required stroke length, which is the distance the hydraulic cylinder can extend and retract. Ensure that the stroke length is sufficient for the specific application and range of motion needed.
- Operating Pressure: Determine the maximum operating pressure required for the hydraulic system. This will depend on the load and the specific application. Select a hydraulic cylinder with a pressure rating that exceeds the maximum operating pressure to ensure safety and durability.
- Mounting Style: Consider the available space and the mounting requirements of the mobile equipment. Hydraulic cylinders come in various mounting styles, such as flange, trunnion, clevis, and pivot, among others. Choose a mounting style that is compatible with the equipment and provides the necessary support and stability.
- Size and Weight: Take into account the physical dimensions and weight of the hydraulic cylinder. Ensure that it can fit within the available space and that the equipment can support its weight without compromising performance or safety.
- Speed and Precision: Evaluate the required speed and precision of the hydraulic cylinder’s movement. Different cylinder designs and configurations can affect the speed and accuracy of motion. Consider factors such as cylinder bore size, rod diameter, and the presence of cushioning or dampening features.
- Environmental Factors: Assess the operating environment of the mobile equipment. Consider factors such as temperature extremes, exposure to moisture, dust, and chemicals. Select hydraulic cylinders with appropriate seals and coatings that can withstand the environmental conditions and prevent corrosion or damage.
- Reliability and Maintenance: Consider the reliability and maintenance requirements of the hydraulic cylinders. Look for reputable manufacturers that provide high-quality products with a proven track record. Evaluate factors such as expected service life, availability of spare parts, and ease of maintenance.
- Cost: Finally, consider the cost of the hydraulic cylinders, including the initial purchase price, installation costs, and long-term maintenance expenses. While it is essential to find a cost-effective solution, prioritize quality and performance to ensure safe and efficient operation.
Can you explain the role and significance of hydraulic cylinders in machinery?
Hydraulic cylinders play a crucial role in machinery across various industries. They are essential components that provide controlled and powerful linear motion, enabling the operation of heavy equipment and facilitating numerous tasks. The role and significance of hydraulic cylinders in machinery can be explained in detail as follows:
Role of Hydraulic Cylinders:
– Conversion of Hydraulic Energy: Hydraulic cylinders convert hydraulic energy, typically in the form of pressurized hydraulic fluid, into linear force and motion. This conversion allows machinery to perform tasks such as lifting, pushing, pulling, clamping, tilting, and controlling various mechanisms.
– Generation of Linear Motion: Hydraulic cylinders generate linear motion by utilizing the principles of Pascal’s law. When hydraulic fluid is directed into one side of the cylinder, it applies pressure on the piston, resulting in linear movement of the piston and the attached piston rod. This linear motion can be used to actuate other components within the machinery or directly perform the required task.
– Force Generation: Hydraulic cylinders are capable of generating high forces due to the hydraulic pressure applied to the piston. The force output of a hydraulic cylinder depends on the surface area of the piston and the pressure of the hydraulic fluid. This force allows machinery to exert significant power for lifting heavy loads, applying pressure, or overcoming resistance.
– Precise Control: Hydraulic cylinders offer precise control over the linear motion and force exerted. By regulating the flow of hydraulic fluid, the speed and direction of the cylinder’s movement can be accurately adjusted. This level of control is crucial in machinery that requires precise positioning, delicate movements, or synchronization of multiple cylinders.
– Integration with Hydraulic Systems: Hydraulic cylinders are integral parts of hydraulic systems used in machinery. They work in conjunction with hydraulic pumps, valves, and actuators to create a complete hydraulic circuit. This integration allows for efficient power transmission, control, and coordination of various machine functions.
Significance of Hydraulic Cylinders:
– Heavy Equipment Operation: Hydraulic cylinders are vital in heavy machinery used in construction, mining, agriculture, material handling, and other industries. They enable the lifting and movement of heavy loads, the operation of attachments, and the performance of tasks that require high force and precision.
– Versatility and Adaptability: Hydraulic cylinders are versatile components that can be designed and tailored to meet specific machinery requirements. They can be integrated into various types of equipment and customized based on factors such as force capacity, stroke length, speed, and mounting options. This adaptability makes hydraulic cylinders suitable for diverse applications.
– Durability and Reliability: Hydraulic cylinders are built to withstand rigorous operating conditions, including high pressures, heavy loads, and continuous use. They are designed with robust materials, precise machining, and effective sealing systems to ensure durability and reliability over extended periods of operation.
– Safety and Load Control: Hydraulic cylinders provide safe and controlled operation in machinery. They offer overload protection mechanisms, such as relief valves, to prevent damage caused by excessive force or pressure. Additionally, hydraulic cylinders allow for precise load control, minimizing the risk of accidents during lifting, lowering, or positioning of heavy loads.
– Compact Design: Hydraulic cylinders offer a high power-to-size ratio, allowing for compact machinery design. Their relatively small size compared to the forces they can generate makes them suitable for applications where space is limited or weight restrictions apply.
– Energy Efficiency: Hydraulic cylinders contribute to energy efficiency in machinery. The use of hydraulic systems allows for the transfer of power over long distances without significant power losses. Additionally, hydraulic cylinders can incorporate energy-saving features such as load-sensing technology and regenerative circuits, reducing energy consumption.
Overall, hydraulic cylinders play a vital role in machinery by providing controlled and powerful linear motion. Their significance lies in their ability to convert hydraulic energy, generate high forces, offer precise control, integrate with hydraulic systems, and facilitate the operation of heavy equipment across various industries. Hydraulic cylinders contribute to increased productivity, safety, and efficiency in machinery applications, making them indispensable components in modern-day engineering.
editor by CX 2023-12-26