China Standard Dkbi Dkb Hydraulic Cylinder NBR PU Dust Wiper Seals 130*146*9/12 with Great quality

Product Description

 

Product Description

 

 

other hot products

 

No. Size Type OEM  
No Size No Size  
1 14X22X4.5/5.5 22 85X99X8/11  
2 14X22X5/7 23 90X104X8/11  
3 19X31X6/9 24 95X109X8/11  
4 20X32X6/9 25 100X114X8/11  
5 22X32X6/9 26 105X121X9/12  
6 25X37X6/9 27 110X126X9/12  
7 28X40X6/9 28 115X131X9/12  
8 30X42X6/9 29 120X136X9/12  
9 32X44X7/10 30 125X141X9/12  
10 35X47X7/10 31 130X146X9/12  
11 40X52X7/10 32 140X160X10/14  
12 45X57X7/10 33 145X165X10/14  
13 50X62X7/10 34 150X 170X10/14  
14 50X64X8/11 35 160X180X10/14  
15 55X69X8/11 36 170X190X10/14  
16 60X74X8/11 37 180X200X10/14  
17 65X79X8/11 38 180X205X12/17  
18 63X77X8/11 39 190X215X12/17  
19 70X84X8/11 40 200X225X12/17  
20 75X89X8/11 41 210X235X12/17  
21 80X94X8/11      
All models can be customized

Company Profile

ZheJiang Hankai Machinery Equipment Co., Ltd. is a professional manufacture of high quality rubber sealss, its also a foreign trade enterprise that sells worldwide.

It was established in 2004 year, We have advanced producing equipments and precise instruments, and have past the ISO9001 quality assurance standards system.

Our seals have exported to Europe, North America, South America and the Middle East, they all gained great praise and trust from customers at home and abroad. We have more than 10000 kinds of oil seals, which used in engineering machines, mining equipments, oilfied equipments, and automobiles. Our factory always follow advancing forward, pursuing the best, adhere to in-through-quality business policy, and established a complete quality assurance system.

With reliable quality assurance, perfect technical service and the best cost performance, We will adhere to forge ahead, realistic and innovative, united struggle and flexible operating system, , keeping up with market demand, dedicated to all old and new customers with providing quality products, perfect pre-sales and after-sales services, ensure customer satisfaction. Hankai Seal Company wishes to go ahead, develop and prosper with all partners and customers hand in hand!

 

 

Packaging & Shipping

 

FAQ

1.Why choose you?

We are a manufacturer with our factory and have more than 10 years experience for construction machinery oil seal.

2. What is your main products?

Our main products are Cassette seal ,TCN & TCV Type Hydraulic seal ,DKB DKBI GA DLI DKBZ Type Dust seal and concrete mixer seal,
skeleton oil seal and also we offer OEM services.

3. What is your MOQ?

Our MOQ is usually 100 pcs.

4.What is the shipping port?

ZheJiang Port ,HangZhou Port,HangZhou Port.

5.What is your delivery time?

The time of delivery is Two weeks (Working days only) after we receive the deposit.

6, What is your time of making samples?

Usually we will take 15-20 working days to make the samples.

7, How about the samples?

FREE SAMPLES can be send but the freight are charged. After the order is confirmed, we would pay back the express fee.

8.What is your payment terms?
30% T/T in advance,70% in the period of shipment.or Western Union,Paypal.

 

Certification: GS, CE, ISO9001
Work Temperature: Normal Temperature
Working Method: Rotary
Adjusted Form: Switching Type
Structure: Rack and Pinion Type
Sample: Available
Samples:
US$ 0.53/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

hydraulic cylinder

Can hydraulic cylinders be integrated with modern telematics and remote monitoring?

Yes, hydraulic cylinders can indeed be integrated with modern telematics and remote monitoring systems. The integration of hydraulic cylinders with telematics and remote monitoring technology offers numerous benefits, including enhanced operational efficiency, improved maintenance practices, and increased overall productivity. Here’s a detailed explanation of how hydraulic cylinders can be integrated with modern telematics and remote monitoring:

1. Sensor Integration:

– Hydraulic cylinders can be equipped with various sensors to gather real-time data about their performance and operating conditions. Sensors such as pressure transducers, temperature sensors, position sensors, and load sensors can be integrated directly into the cylinder or its associated components. These sensors provide valuable information about parameters such as pressure, temperature, position, and load, enabling remote monitoring and analysis of the cylinder’s behavior.

2. Data Transmission:

– The data collected from the sensors in hydraulic cylinders can be transmitted wirelessly or through wired connections to a central monitoring system. Wireless communication technologies such as Bluetooth, Wi-Fi, or cellular networks can be employed to transmit data in real-time. Alternatively, wired connections such as Ethernet or CAN bus can be utilized for data transmission. The choice of communication method depends on the specific requirements of the application and the available infrastructure.

3. Remote Monitoring Systems:

– Remote monitoring systems receive and process the data transmitted from hydraulic cylinders. These systems can be cloud-based or hosted on local servers, depending on the implementation. Remote monitoring systems collect and analyze the data to provide insights into the cylinder’s performance, health, and usage patterns. Operators and maintenance personnel can access the monitoring system through web-based interfaces or dedicated software applications to view real-time data, receive alerts, and generate reports.

4. Condition Monitoring and Predictive Maintenance:

– Integration with telematics and remote monitoring enables condition monitoring and predictive maintenance of hydraulic cylinders. By analyzing the collected data, patterns and trends can be identified, allowing for the detection of potential issues or anomalies before they escalate into major problems. Predictive maintenance algorithms can be applied to the data to generate maintenance schedules, recommend component replacements, and optimize maintenance activities. This proactive approach helps prevent unexpected downtime, reduces maintenance costs, and maximizes the lifespan of hydraulic cylinders.

5. Performance Optimization:

– The data collected from hydraulic cylinders can also be utilized to optimize their performance. By analyzing parameters such as pressure, temperature, and load, operators can identify opportunities for improving operational efficiency. Insights gained from the remote monitoring system can guide adjustments in system settings, load management, or operational practices to optimize the performance of hydraulic cylinders and the overall hydraulic system. This optimization can result in energy savings, improved productivity, and reduced wear and tear.

6. Integration with Equipment Management Systems:

– Telematics and remote monitoring systems can be integrated with broader equipment management systems. This integration allows hydraulic cylinder data to be correlated with data from other components or related machinery, providing a comprehensive view of the overall system’s performance. This holistic approach enables operators to identify potential interdependencies, optimize system-wide performance, and make informed decisions regarding maintenance, repairs, or upgrades.

7. Enhanced Safety and Fault Diagnosis:

– Telematics and remote monitoring can contribute to enhanced safety and fault diagnosis in hydraulic systems. Real-time data from hydraulic cylinders can be used to detect abnormal conditions, such as excessive pressure or temperature, which may indicate potential safety risks. Fault diagnosis algorithms can analyze the data to identify specific issues or malfunctions, enabling prompt intervention and reducing the risk of catastrophic failures or accidents.

In summary, hydraulic cylinders can be effectively integrated with modern telematics and remote monitoring systems. This integration enables the collection of real-time data, remote monitoring of performance, condition monitoring, predictive maintenance, performance optimization, integration with equipment management systems, and enhanced safety. By harnessing the power of telematics and remote monitoring, hydraulic cylinder users can achieve improved efficiency, reduced downtime, optimized maintenance practices, and enhanced overall productivity in various applications and industries.

hydraulic cylinder

Handling Challenges of Different Fluid Viscosities in Hydraulic Cylinders

Hydraulic cylinders are designed to handle the challenges associated with different fluid viscosities. The viscosity of hydraulic fluid can vary based on temperature, type of fluid used, and other factors. Hydraulic systems need to accommodate these variations to ensure optimal performance and efficiency. Let’s explore how hydraulic cylinders handle the challenges of different fluid viscosities:

  1. Fluid Selection: Hydraulic cylinders are designed to work with a range of hydraulic fluids, each with its specific viscosity characteristics. The selection of an appropriate fluid with the desired viscosity is crucial to ensure optimal performance. Manufacturers provide guidelines regarding the recommended viscosity range for specific hydraulic systems and cylinders. By choosing the right fluid, hydraulic cylinders can effectively handle the challenges posed by different fluid viscosities.
  2. Viscosity Compensation: Hydraulic systems often incorporate features to compensate for variations in fluid viscosity. For example, some hydraulic systems utilize pressure compensating valves that adjust the flow rate based on the viscosity of the fluid. This compensation ensures consistent performance across different operating conditions and fluid viscosities. Hydraulic cylinders work in conjunction with these compensation mechanisms to maintain precision and control, regardless of the fluid viscosity.
  3. Temperature Control: Fluid viscosity is highly dependent on temperature. Hydraulic cylinders employ various temperature control mechanisms to address the challenges posed by temperature-induced viscosity changes. Heat exchangers, coolers, and thermostatic valves are commonly used to regulate the temperature of the hydraulic fluid within the system. By controlling the fluid temperature, hydraulic cylinders can maintain the desired viscosity range, ensuring reliable and efficient operation.
  4. Efficient Filtration: Contaminants in hydraulic fluid can affect its viscosity and overall performance. Hydraulic systems incorporate efficient filtration systems to remove particles and impurities from the fluid. Clean fluid with the appropriate viscosity ensures optimal functioning of hydraulic cylinders. Regular maintenance and filter replacements are essential to uphold the desired fluid viscosity and prevent issues related to fluid contamination.
  5. Proper Lubrication: Different fluid viscosities can impact the lubrication properties within hydraulic cylinders. Lubrication is essential for minimizing friction and wear between moving parts. Hydraulic systems employ lubricants specifically formulated for the anticipated fluid viscosity range. Adequate lubrication ensures smooth operation and extends the lifespan of hydraulic cylinders, even in the presence of varying fluid viscosities.

In summary, hydraulic cylinders employ various strategies to handle the challenges associated with different fluid viscosities. By selecting appropriate fluids, incorporating viscosity compensation mechanisms, controlling temperature, implementing efficient filtration, and ensuring proper lubrication, hydraulic cylinders can accommodate variations in fluid viscosity. These measures enable hydraulic systems to deliver consistent performance, precise control, and efficient operation across different fluid viscosity ranges.

hydraulic cylinder

Can you provide real-world examples of machinery that heavily rely on hydraulic cylinders?

Hydraulic cylinders are widely used in various industries and applications due to their ability to provide powerful and precise linear motion. They play a crucial role in enabling the operation of heavy machinery that requires controlled force and movement. Here are some real-world examples of machinery that heavily rely on hydraulic cylinders:

1. Construction Equipment:

– Hydraulic cylinders are extensively used in construction machinery, such as excavators, bulldozers, loaders, and cranes. These machines rely on hydraulic cylinders to perform tasks like lifting heavy loads, extending and retracting booms, tilting buckets, and controlling the movement of various components. Hydraulic cylinders provide the power and precision required to handle the demanding conditions and heavy loads encountered in construction projects.

2. Agricultural Machinery:

– Many agricultural machines, including tractors, combine harvesters, and sprayers, utilize hydraulic cylinders for critical operations. Hydraulic cylinders are used to control the movement of attachments, such as front loaders, backhoes, and plows. They enable functions like lifting and lowering implements, adjusting cutting heights, and controlling the positioning of harvesting equipment. Hydraulic cylinders enhance efficiency and productivity in agricultural operations.

3. Material Handling Equipment:

– Hydraulic cylinders are integral components of material handling equipment, such as forklifts, pallet jacks, and cranes. These machines rely on hydraulic cylinders to lift and lower loads, tilt platforms or forks, and control the movement of lifting mechanisms. Hydraulic cylinders provide the necessary strength and precision to handle heavy loads and ensure safe and efficient material handling operations.

4. Industrial Machinery:

– Various industrial machinery and equipment heavily rely on hydraulic cylinders for critical functions. Examples include hydraulic presses, injection molding machines, metal-forming machines, and hydraulic-powered robots. Hydraulic cylinders enable precise control of force and movement in these applications, allowing for accurate shaping, pressing, and assembly processes.

5. Mining Equipment:

– Hydraulic cylinders are extensively used in mining machinery and equipment. Underground mining machines, such as continuous miners and longwall shearers, utilize hydraulic cylinders for cutting, shearing, and roof support operations. Surface mining equipment, including hydraulic shovels, draglines, and haul trucks, rely on hydraulic cylinders for tasks like bucket movement, boom extension, and vehicle suspension.

6. Automotive Industry:

– The automotive industry extensively utilizes hydraulic cylinders in various applications. Hydraulic cylinders are employed in vehicle suspension systems, power steering systems, convertible tops, and hydraulic brake systems. They enable smooth and controlled movement, precise steering, and efficient braking in automobiles.

7. Aerospace and Aviation:

– Hydraulic cylinders are utilized in aerospace and aviation applications, such as aircraft landing gear systems, wing flaps, and cargo handling equipment. Hydraulic cylinders provide the necessary force and control for extending and retracting landing gear, adjusting wing flaps, and operating cargo doors, ensuring safe and reliable aircraft operations.

8. Marine and Offshore Industry:

– Hydraulic cylinders are essential components in marine and offshore equipment, including ship cranes, winches, and hydraulic-powered anchor systems. They enable lifting, lowering, and positioning of heavy loads, as well as the control of various marine equipment.

These are just a few examples of machinery and industries that heavily rely on hydraulic cylinders. The versatility, power, and precise control offered by hydraulic cylinders make them indispensable in a wide range of applications, where controlled linear motion and force are essential.

China Standard Dkbi Dkb Hydraulic Cylinder NBR PU Dust Wiper Seals 130*146*9/12   with Great quality China Standard Dkbi Dkb Hydraulic Cylinder NBR PU Dust Wiper Seals 130*146*9/12   with Great quality
editor by CX 2023-11-06