Product Description
Product Description
Capacity | Stroke | Model | Min Height | Outside Diameter | Effective Area | Oil Capacity | Saddle Diameter | Weight |
(Ton) | (mm) | (mm) | (mm) | (cm²) | (cm³) | (mm) | (Kg) | |
50 | 50 | CLS502A | 128 | 125 | 70.9 | 355 | 71 | 4 |
50 | 100 | CLS504A | 178 | 125 | 70.9 | 709 | 71 | 18 |
50 | 150 | CLS506 | 228 | 125 | 70.9 | 1064 | 71 | 23 |
50 | 200 | CLS508A | 278 | 125 | 70. 9 | 1418 | 71 | 28 |
50 | 250 | CLS5571A | 328 | 125 | 70. 9 | 1773 | 71 | 33 |
50 | 300 | CLS5012A | 378 | 125 | 70. 9 | 2127 | 71 | 38 |
100 | 50 | CLS1002A | 143 | 164 | 132. 7 | 664 | 71 | 24 |
100 | 100 | CLS1004 | 193 | 164 | 132.7 | 1327 | 71 | 32 |
100 | 150 | CLS1006 | 243 | 164 | 132 7 | 1991 | 71 | 40 |
100 | 200 | CLS1008A | 293 | 164 | 132. 7 | 2654 | 71 | 49 |
100 | 250 | CLS1571 | 343 | 164 | 132 7 | 3318 | 71 | 58 |
100 | 300 | CLS10012 | 393 | 164 | 132.7 | 3981 | 71 | 66 |
150 | 50 | CLS1502 | 165 | 209 | 201 | 1005 | 130 | 43 |
150 | 100 | CLS1504 | 215 | 209 | 201 | 2571 | 130 | 55 |
150 | 150 | CLS1506 | 265 | 209 | 201 | 3015 | 130 | 69 |
150 | 200 | CLS1508 | 315 | 209 | 201 | 4571 | 130 | 82 |
150 | 250 | CLS15571 | 365 | 209 | 201 | 5571 | 130 | 95 |
150 | 300 | CLS15012 | 415 | 209 | 201 | 6030 | 130 | 108 |
200 | 50 | CLS2002 | 193 | 235 | 265.9 | 1330 | 130 | 66 |
200 | 150 | CLS2006 | 293 | 235 | 265.9 | 3989 | 130 | 101 |
200 | 250 | CLS2571A | 393 | 235 | 265.9 | 6648 | 130 | 136 |
250 | 50 | CLS2502 | 193 | 275 | 366.4 | 1832 | 150 | 90 |
250 | 150 | CLS2506 | 293 | 275 | 366. 4 | 5496 | 150 | 137 |
250 | 250 | CLS25571 | 393 | 275 | 366.4 | 9160 | 150 | 184 |
300 | 50 | CLS3002 | 235 | 310 | 456.2 | 2281 | 139 | 137 |
300 | 150 | CLS3006 | 335 | 310 | 456. 2 | 6843 | 139 | 198 |
300 | 250 | CLS3571 | 435 | 310 | 456. 2 | 11405 | 139 | 258 |
400 | 50 | CLS4002 | 265 | 350 | 559.9 | 2800 | 159 | 200 |
400 | 150 | CLS4006 | 365 | 350 | 559. 9 | 8399 | 159 | 275 |
400 | 250 | CLS4571 | 465 | 350 | 559.9 | 13998 | 159 | 352 |
500 | 50 | CLS5002 | 295 | 400 | 730. 6 | 3656 | 228 | 289 |
500 | 150 | CLS5006 | 395 | 400 | 730. 6 | 10967 | 228 | 390 |
500 | 250 | CLS5571 | 495 | 400 | 730. 6 | 18278 | 228 | 489 |
600 | 50 | CLS6002 | 310 | 430 | 855. 3 | 4277 | 194 | 350 |
600 | 150 | CLS6006 | 410 | 430 | 855.3 | 12830 | 194 | 465 |
600 | 250 | CLS6571 | 510 | 430 | 855. 3 | 21383 | 194 | 582 |
800 | 50 | CLS8002 | 355 | 505 | 1176.3 | 5882 | 224 | 549 |
800 | 150 | CLS8006 | 455 | 505 | 1176.3 | 17645 | 224 | 709 |
800 | 250 | CLS8571 | 555 | 505 | 1176.3 | 29408 | 224 | 870 |
1000 | 50 | CLS10002 | 385 | 560 | 1465. 7 | 7329 | 360 | 729 |
1000 | 150 | CLS10006 | 485 | 560 | 1465.7 | 21986 | 360 | 921 |
1000 | 250 | CLS10571 | 585 | 560 | 1465.7 | 36643 | 360 | 1113 |
Company Profile
Why Choose Us
Quality control
Certifications
Exhibition photos
Our Customers
FAQ
Q: How to order?
A: Inquire with us→ sample customization→ use scenario inform→ receive our product design recommendation→ negotiate details→ confirm the sample→ CHINAMFG the contract/deposit→mass production→ the goods are ready→ balance/delivery→ further cooperation.
Q: How about the sample order?
A: We can provide the sample price, please contact us for details.
Q: Which shipping method is available?
A: By sea, by air, or by express (DHL, UPS, FedEx). Other shipping methods are also available, please contact us for details.
Q: How long is the delivery [production] and shipment?
A: The delivery time depends on the quantity you ordered. Shipped from the factory, within 3 days for standard parts and within 10 days for non-standard parts.
Q: My package is missing some products, what can I do?
A: Please contact our support team, we will confirm the contents of your order with the packaging, and compensate for the shipment. We apologize for the inconvenience.
Q: How to confirm the payment?
A: We accept T/T payment method. The first type is 30% deposit order confirmed, and the remaining 70% is paid before shipment, and the second type is 100% paid before shipment. Other payment methods are also acceptable, please contact us before you pay by other payment methods.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | CE, ISO9001 |
---|---|
Pressure: | High Pressure |
Work Temperature: | Normal Temperature |
Acting Way: | Single Acting |
Working Method: | Straight Trip |
Adjusted Form: | Switching Type |
Customization: |
Available
|
|
---|
How do hydraulic cylinders ensure smooth and consistent movement in heavy machinery?
Hydraulic cylinders play a vital role in ensuring smooth and consistent movement in heavy machinery. Their design and operation allow for precise control over the motion of heavy loads, resulting in efficient and reliable performance. Here’s a detailed explanation of how hydraulic cylinders contribute to smooth and consistent movement in heavy machinery:
1. Hydraulic Fluid and Pressure:
– Hydraulic cylinders operate by utilizing hydraulic fluid, typically oil, to transmit force and motion. The fluid is pressurized by a hydraulic pump, creating a force that acts on the piston inside the cylinder. The pressure of the hydraulic fluid can be precisely controlled, allowing for smooth and gradual movement of heavy machinery. The fluid’s incompressibility ensures that the force is evenly distributed, resulting in consistent and predictable motion.
2. Piston and Cylinder Design:
– Hydraulic cylinders are designed with precision to ensure smooth movement. The piston and cylinder bore are machined to tight tolerances, reducing friction and minimizing internal leakage. This precise fit between the piston and cylinder walls helps maintain consistent motion without jerks or sudden changes in speed. Additionally, the use of high-quality seals and lubrication further enhances the smooth operation of the cylinder.
3. Control Valves and Flow Control:
– Hydraulic systems incorporate control valves that regulate the flow of hydraulic fluid into and out of the cylinder. These valves allow for precise control over the speed and direction of the cylinder’s movement. By adjusting the flow rate, operators can achieve smooth and controlled motion of heavy machinery, avoiding sudden starts or stops. Flow control valves also enable speed adjustment, ensuring consistent movement even under varying loads or operating conditions.
4. Cushioning and Damping:
– Hydraulic cylinders can be equipped with cushioning mechanisms to absorb shock and minimize impacts during the movement of heavy machinery. Cushioning is achieved by incorporating specialized valves or adjustable orifices in the cylinder, which restrict the flow of hydraulic fluid near the end of the stroke. This gradual deceleration helps prevent sudden jolts or vibrations, maintaining smooth and consistent movement while reducing stress on the machinery and its components.
5. Load Balancing:
– Hydraulic cylinders can be designed and arranged in a system to balance the load and distribute forces evenly. By utilizing multiple cylinders in parallel or series configurations, heavy machinery can achieve balanced movement, preventing uneven stress and ensuring smooth operation. Load balancing also helps minimize the risk of component failure and enhances the overall stability and longevity of the machinery.
6. Feedback and Control Systems:
– Advanced hydraulic systems incorporate feedback sensors and control systems to monitor and adjust the movement of heavy machinery. These sensors provide real-time information about the position, speed, and force exerted by the hydraulic cylinders. The control system processes this data and adjusts the flow of hydraulic fluid accordingly to maintain smooth and consistent movement. By continuously monitoring and regulating the cylinder’s operation, feedback and control systems contribute to precise and reliable motion control.
7. Maintenance and Servicing:
– Regular maintenance and servicing of hydraulic cylinders are essential to ensure their smooth and consistent movement in heavy machinery. Proper lubrication, inspection of seals, and replacement of worn-out components help maintain optimal performance. Preventive maintenance practices, such as filter replacements and fluid analysis, also contribute to the longevity and reliability of hydraulic systems, ensuring consistent movement over time.
In summary, hydraulic cylinders ensure smooth and consistent movement in heavy machinery through the use of hydraulic fluid and pressure, precise piston and cylinder design, control valves and flow control, cushioning and damping mechanisms, load balancing, feedback and control systems, and regular maintenance and servicing. By leveraging these features, hydraulic cylinders provide the necessary force and control to handle heavy loads while maintaining precise and reliable motion, enhancing the overall performance and productivity of heavy machinery in various industrial applications.
What considerations are important when selecting hydraulic cylinders for mobile equipment?
To select hydraulic cylinders for mobile equipment, several important considerations need to be taken into account. Here are the key factors to consider:
- Load Capacity: Determine the maximum load or force that the hydraulic cylinder will need to support. This includes both the static load and any dynamic or shock loads that may be encountered during operation.
- Stroke Length: Consider the required stroke length, which is the distance the hydraulic cylinder can extend and retract. Ensure that the stroke length is sufficient for the specific application and range of motion needed.
- Operating Pressure: Determine the maximum operating pressure required for the hydraulic system. This will depend on the load and the specific application. Select a hydraulic cylinder with a pressure rating that exceeds the maximum operating pressure to ensure safety and durability.
- Mounting Style: Consider the available space and the mounting requirements of the mobile equipment. Hydraulic cylinders come in various mounting styles, such as flange, trunnion, clevis, and pivot, among others. Choose a mounting style that is compatible with the equipment and provides the necessary support and stability.
- Size and Weight: Take into account the physical dimensions and weight of the hydraulic cylinder. Ensure that it can fit within the available space and that the equipment can support its weight without compromising performance or safety.
- Speed and Precision: Evaluate the required speed and precision of the hydraulic cylinder’s movement. Different cylinder designs and configurations can affect the speed and accuracy of motion. Consider factors such as cylinder bore size, rod diameter, and the presence of cushioning or dampening features.
- Environmental Factors: Assess the operating environment of the mobile equipment. Consider factors such as temperature extremes, exposure to moisture, dust, and chemicals. Select hydraulic cylinders with appropriate seals and coatings that can withstand the environmental conditions and prevent corrosion or damage.
- Reliability and Maintenance: Consider the reliability and maintenance requirements of the hydraulic cylinders. Look for reputable manufacturers that provide high-quality products with a proven track record. Evaluate factors such as expected service life, availability of spare parts, and ease of maintenance.
- Cost: Finally, consider the cost of the hydraulic cylinders, including the initial purchase price, installation costs, and long-term maintenance expenses. While it is essential to find a cost-effective solution, prioritize quality and performance to ensure safe and efficient operation.
What benefits do hydraulic cylinders offer for tasks requiring heavy lifting or movement?
Hydraulic cylinders offer numerous benefits for tasks that involve heavy lifting or movement. Their unique design and characteristics make them well-suited for applications that require substantial force, precise control, and reliable operation. Here are the detailed benefits that hydraulic cylinders provide for such tasks:
1. High Force Generation:
– Hydraulic cylinders are capable of generating significant amounts of force. By utilizing hydraulic pressure, which can be easily amplified, hydraulic cylinders can exert substantial force to lift and move heavy loads. The force output of a hydraulic cylinder is directly proportional to the hydraulic pressure and the surface area of the piston. This high force capability makes hydraulic cylinders ideal for tasks that involve heavy lifting, pushing, or pulling.
2. Precise Control:
– Hydraulic cylinders offer precise control over the force and motion they generate. By regulating the flow of hydraulic fluid into the cylinder, the speed, direction, and position of the cylinder’s movement can be accurately controlled. This level of control is crucial for tasks that require precise positioning, delicate movements, or synchronization of multiple cylinders. It enables operators to perform operations with accuracy and minimize the risk of damage or accidents.
3. Safety:
– Hydraulic cylinders are designed with safety features to ensure the protection of both personnel and equipment. They incorporate overload protection mechanisms, such as relief valves, that prevent excessive force or pressure from damaging the system. Additionally, hydraulic cylinders allow for controlled and gradual movements, reducing the risk of sudden and uncontrolled motions that could pose safety hazards during heavy lifting or movement tasks.
4. Versatility and Adaptability:
– Hydraulic cylinders are versatile components that can be adapted to meet specific requirements. They can be customized based on factors such as force capacity, stroke length, speed, and mounting options, allowing them to be integrated into various types of machinery. This versatility makes hydraulic cylinders suitable for a wide range of applications, including construction, material handling, mining, agriculture, and more.
5. Smooth and Controlled Operation:
– Hydraulic cylinders provide smooth and controlled operation, ensuring efficient and reliable performance during heavy lifting or movement tasks. The hydraulic fluid acts as a cushioning medium, which helps dampen shocks and vibrations, resulting in smoother and quieter operation. This controlled operation also reduces the risk of damage to the load being lifted or the surrounding equipment.
6. Compact Design:
– Hydraulic cylinders offer a high power-to-size ratio, allowing for compact machinery design. Their relatively small size, compared to the forces they can generate, makes them suitable for applications where space is limited or weight restrictions apply. This compact design enables the integration of hydraulic cylinders into different types of equipment without compromising performance or efficiency.
7. Durability and Reliability:
– Hydraulic cylinders are built to withstand rigorous operating conditions and provide long-term reliability. They are constructed with robust materials, precise machining, and effective sealing systems to ensure durability and prevent fluid leakage. Hydraulic cylinders can withstand high pressures, heavy loads, and continuous use, making them suitable for demanding tasks involving heavy lifting or movement.
8. Energy Efficiency:
– Hydraulic cylinders contribute to energy efficiency in tasks requiring heavy lifting or movement. Hydraulic systems allow for the transfer of power over long distances without significant power losses. Additionally, hydraulic cylinders can incorporate energy-saving features such as load-sensing technology and regenerative circuits, which reduce energy consumption by optimizing the use of hydraulic fluid.
In summary, hydraulic cylinders offer several benefits for tasks that involve heavy lifting or movement. They provide high force generation, precise control, safety features, versatility, smooth operation, compact design, durability, and energy efficiency. These advantages make hydraulic cylinders indispensable components in various industries where heavy loads need to be lifted, pushed, or moved with accuracy and reliability.
editor by CX 2023-12-28