Product Description
Factory Manufacture Various Boom Aerial work vehicle hydraulic Lower arm cylinder
Different Type Forklift Hydraulic Cylinder
1. Forklift Lifting hydraulic cylinder
Lifting hydraulic cylinders is 1 of the most common hydraulic cylinders in forklifts. It is used to lift or lower the fork arm to lift and lower the cargo vertically. Lifting hydraulic cylinders usually have significant thrust and load-bearing capacity to cope with the weight of the forks and cargo.
2. Forklift Tilt hydraulic cylinder
The tilt hydraulic cylinder is used to control the tilt angle of the fork arm. It enables the fork arm to tilt CZPT or backward to meet the requirements of cargo loading, unloading, and stacking. Tilt hydraulic cylinders typically have a more minor stroke and more enormous tilt torque.
3. Forklift Side shift hydraulic cylinder
The side shift hydraulic cylinder is used to achieve lateral translation of the fork arm. It enables the fork arm to move horizontally to adjust the position of the cargo. Sideshift hydraulic cylinders typically have a large side-shift stroke and force.
4. Forklift Steering hydraulic cylinder
The steering hydraulic cylinder is used to control the steering operation of forklifts. It achieves the turning of the steering wheel by pushing the steering mechanism. The steering hydraulic cylinder usually has a minor stroke and fast response speed to achieve precise handling and flexibility of forklifts.
bore diameter (D) | rod diameter (d) | stroke (S) | Installation distance (L) | working pressure | Interface dimensions (M) | weight |
Φ100 | Φ80 | 1458 | 1899 | 21MPa | 2-Φ9 | 137kg |
Applications of hydraulic cylinder
In the context of a boom aerial work vehicle, a hydraulic lower arm cylinder refers to a hydraulic cylinder that is part of the lower arm assembly of the boom.
Boom aerial work vehicles, also known as aerial lifts or CZPT pickers, elevate workers to heights for maintenance, construction, or utility work. The lower arm of the boom is the section that connects the vehicle’s main body to the upper arm or the telescopic boom assembly.
The hydraulic lower arm cylinder controls the movement of the lower arm. It is typically a double-acting hydraulic cylinder, which can extend and retract using hydraulic pressure. The lower arm can be raised or lowered by opening or retracting the hydraulic cylinder, allowing for vertical positioning of the boom and the aerial platform.
The hydraulic lower arm cylinder works with other hydraulic components, such as pumps, control valves, and hydraulic lines. The hydraulic system supplies pressurized hydraulic fluid to the cylinder, enabling the controlled movement of the lower arm.
The boom aerial work vehicle operator controls the movement of the lower arm using the vehicle’s control system. By activating the appropriate controls, hydraulic fluid is directed to the hydraulic lower arm cylinder, extending or retracting it to raise or lower the lower arm.
It’s important to note that the specific design and operation of the hydraulic lower arm cylinder may vary depending on the manufacturer and model of the boom aerial work vehicle. The hydraulic system is designed to provide safe and precise control over the boom’s movement, allowing operators to position the aerial platform accurately and safely at varying heights. Model.
Application of hydraulic lower arm cylinder
The hydraulic lower arm cylinder in a boom aerial work vehicle has various applications in industries that involve working at heights. Here are some typical applications:
1. Construction and Maintenance: Boom aerial work vehicles with hydraulic lower arm cylinders are widely used in construction and maintenance projects. They allow workers to access elevated areas, such as building facades, roofs, bridges, or utility poles, for tasks like painting, repairs, installations, or inspections.
2. Electrical and Telecommunications: In the electrical and telecommunications industries, hydraulic lower arm cylinders in boom aerial work vehicles reach overhead power lines, communication cables, or equipment for maintenance, installation, or troubleshooting purposes. They provide a safe and efficient way to work on electrical or telecommunications infrastructure at elevated heights.
3. Tree Care and Landscaping: Arborists and landscaping professionals use boom aerial vehicles with hydraulic lower-arm cylinders for tree care and maintenance tasks. They enable workers to reach tall trees for pruning, trimming, or removal, improving safety and efficiency in tree care operations.
4. Window Cleaning: High-rise buildings and commercial structures often require professional window cleaning services. Boom aerial work vehicles equipped with hydraulic lower arm cylinders allow window cleaners to access windows at various heights, facilitating thorough and safe cleaning operations.
5. Event Management: In event management and entertainment industries, boom aerial work vehicles are used to set up lighting, audio systems, or decorations at elevated stages, concert venues, or event spaces. The hydraulic lower arm cylinders enable precise positioning and adjustment of equipment, ensuring optimal event setups.
6. Industrial Inspections: Hydraulic lower arm cylinders are employed in industrial facilities to inspect equipment, machinery, or structures at heights. They provide a stable and secure platform for inspectors to access and examine critical components or perform maintenance checks.
7. Emergency Services: Fire departments and rescue teams utilize boom aerial work vehicles with hydraulic lower arm cylinders for emergencies. These vehicles help access elevated areas during firefighting operations, rescue missions, or disaster response efforts.
The applications mentioned above highlight the versatility and usefulness of hydraulic lower arm cylinders in boom aerial work vehicles. They enable safe and efficient work at heights across various industries, enhancing productivity, accessibility, and worker safety.
Our Company
We have a first-class independent R&D platform for assembly. The forklift cylinder production workshop has 4 semi-automatic lifting cylinder assembly lines and 1 fully automatic tilting cylinder assembly line, with a designed annual production capacity of 1 million pieces; the special cylinder workshop is equipped with semi-automatic cleaning and assembly systems of various specifications, with a designed annual production capacity of 200,000 essays. It has famous CNC machining equipment, machining centers, special equipment for high-precision cylinder processing, robot welding machines, automatic cleaning machines, automatic cylinder assembly machines, and automatic paint production lines. We have more than 300 sets of critical equipment running. The optimized allocation and efficient utilization of equipment resources ensure the precision requirements of the products and meet the high standard quality requirements of the products.
Forklift cylinder assembly shop |
Other types of cylinder assembly shop |
Welding
Painting & coating
Painting & coating line |
Fully automatic water-based |
Testing
To further improve product performance, and establish the leadership position of our hydraulic cylinder in the industry, our company and zjimee jointly established a Comprehensive performance laboratory of hydraulic cylinders, hydraulic valves, and hydraulic pumps; the lab is computer-assisted testing, using electro-hydraulic control technology, the test conditions preset by computer, which improves the test accuracy and system versatility, and the experimental data.
The automatic collection is realized through the application of sensors, and the output data, such as the internal leakage and load efficiency of the cylinder or the valve, are directly processed by the computer and converted to standard units (ml/min; %). At the same time, to ensure the working safety of the hydraulic system, the state monitoring function is carried out for key performance parameters, such as “oil temperature monitoring, liquid level monitoring, filter device monitoring,” etc. Among them, the hydraulic cylinder test stand can test the performance of “load efficiency” and “internal leakage” by readings. At the same time, it is equipped with a grating ruler measuring instrument, which meets the requirements of all test items of hydraulic cylinder products in the national standard.
Our Factory
Packaging & Shipping
A short lifting cylinder for a forklift is a specific type of hydraulic cylinder designed for vertical lifting applications in forklifts. It is typically used to raise and lower the mast assembly and forks of the forklift, allowing for the lifting and positioning of loads.
Certification: | GS, RoHS, CE, ISO9001 |
---|---|
Pressure: | High Pressure |
Work Temperature: | Normal Temperature |
Acting Way: | Double Acting |
Working Method: | Rotary |
Adjusted Form: | Regulated Type |
How do manufacturers ensure the durability and reliability of hydraulic cylinders?
Manufacturers employ various strategies and techniques to ensure the durability and reliability of hydraulic cylinders. These measures are crucial as hydraulic cylinders are often subjected to demanding operating conditions and heavy loads. To ensure their longevity and dependable performance, manufacturers focus on the following aspects:
1. High-Quality Materials:
– Manufacturers use high-quality materials in the construction of hydraulic cylinders. Components such as cylinder barrels, piston rods, seals, and bearings are made from materials that possess excellent strength, corrosion resistance, and wear resistance properties. Common materials used include high-grade steel alloys, chrome-plated rods, and specialized coatings. The selection of appropriate materials ensures that hydraulic cylinders can withstand the stresses, pressures, and environmental conditions they encounter during operation.
2. Robust Design:
– Hydraulic cylinders are designed to withstand high loads and harsh operating conditions. Manufacturers use computer-aided design (CAD) software and finite element analysis (FEA) techniques to optimize the cylinder’s structural integrity and performance. The design includes factors such as proper wall thickness, reinforcement in critical areas, and appropriate sizing of components. Robust design practices ensure that hydraulic cylinders can withstand the forces and stresses they encounter, preventing premature failure and ensuring durability.
3. Quality Manufacturing Processes:
– Manufacturers follow stringent quality control measures during the manufacturing processes of hydraulic cylinders. These processes include precision machining, welding, heat treatment, and surface finishing. Skilled technicians and advanced machinery are employed to ensure dimensional accuracy, proper fitment of components, and overall quality. By adhering to strict manufacturing processes and quality standards, manufacturers can produce hydraulic cylinders with consistent performance and reliability.
4. Sealing Technology:
– The sealing system of hydraulic cylinders is critical for their durability and reliability. Manufacturers utilize advanced sealing technologies such as lip seals, O-rings, and composite seals to prevent fluid leakage and ingress of contaminants. Properly designed and high-quality seals ensure that hydraulic cylinders can maintain their performance over extended periods. Seals are tested for their compatibility with the hydraulic fluid, pressure resistance, and resilience to environmental factors such as temperature and humidity.
5. Performance Testing:
– Manufacturers subject hydraulic cylinders to rigorous performance testing to validate their durability and reliability. These tests simulate real-world operating conditions and evaluate factors such as load capacity, pressure resistance, fatigue life, and leakage. Performance testing helps identify any design flaws or weaknesses in the hydraulic cylinder and allows manufacturers to make necessary improvements. By conducting thorough performance testing, manufacturers can ensure that hydraulic cylinders meet or exceed the required performance standards.
6. Compliance with Industry Standards:
– Manufacturers adhere to industry standards and regulations to ensure the durability and reliability of hydraulic cylinders. These standards, such as ISO 6020/6022 and NFPA T3.6.7, provide guidelines for design, manufacturing, and performance requirements. By following these standards, manufacturers ensure that hydraulic cylinders are designed and built to meet specific quality and safety criteria. Compliance with industry standards helps establish a baseline for durability and reliability and instills confidence in the performance of hydraulic cylinders.
7. Regular Maintenance and Service:
– Manufacturers provide recommendations for regular maintenance and service of hydraulic cylinders. This includes guidelines for lubrication, inspection of components, and replacement of wear parts such as seals and bearings. Following the manufacturer’s maintenance guidelines helps ensure the long-term durability and reliability of hydraulic cylinders. Regular maintenance also allows for the early detection of potential issues, preventing major failures and extending the service life of the hydraulic cylinders.
8. Customer Support and Warranty:
– Manufacturers provide customer support and warranty services to address any issues that arise with hydraulic cylinders. They offer technical assistance, troubleshooting guidance, and replacement of defective components. The warranty ensures that customers receive reliable and durable hydraulic cylinders and provides recourse in case of any manufacturing defects or premature failures. Strong customer support and warranty policies reflect the manufacturer’s commitment to the durability and reliability of their products.
In summary, manufacturers ensure the durability and reliability of hydraulic cylinders through the use of high-quality materials, robust design practices, stringent manufacturing processes, advanced sealing technology, thorough performance testing, compliance with industry standards, regular maintenance guidelines, and customer support with warranty services. By focusing on these aspects, manufacturers can produce hydraulic cylinders that can withstand demanding conditions, provide long service life, and deliver reliable performance in various applications.
What considerations are important when selecting hydraulic cylinders for mobile equipment?
To select hydraulic cylinders for mobile equipment, several important considerations need to be taken into account. Here are the key factors to consider:
- Load Capacity: Determine the maximum load or force that the hydraulic cylinder will need to support. This includes both the static load and any dynamic or shock loads that may be encountered during operation.
- Stroke Length: Consider the required stroke length, which is the distance the hydraulic cylinder can extend and retract. Ensure that the stroke length is sufficient for the specific application and range of motion needed.
- Operating Pressure: Determine the maximum operating pressure required for the hydraulic system. This will depend on the load and the specific application. Select a hydraulic cylinder with a pressure rating that exceeds the maximum operating pressure to ensure safety and durability.
- Mounting Style: Consider the available space and the mounting requirements of the mobile equipment. Hydraulic cylinders come in various mounting styles, such as flange, trunnion, clevis, and pivot, among others. Choose a mounting style that is compatible with the equipment and provides the necessary support and stability.
- Size and Weight: Take into account the physical dimensions and weight of the hydraulic cylinder. Ensure that it can fit within the available space and that the equipment can support its weight without compromising performance or safety.
- Speed and Precision: Evaluate the required speed and precision of the hydraulic cylinder’s movement. Different cylinder designs and configurations can affect the speed and accuracy of motion. Consider factors such as cylinder bore size, rod diameter, and the presence of cushioning or dampening features.
- Environmental Factors: Assess the operating environment of the mobile equipment. Consider factors such as temperature extremes, exposure to moisture, dust, and chemicals. Select hydraulic cylinders with appropriate seals and coatings that can withstand the environmental conditions and prevent corrosion or damage.
- Reliability and Maintenance: Consider the reliability and maintenance requirements of the hydraulic cylinders. Look for reputable manufacturers that provide high-quality products with a proven track record. Evaluate factors such as expected service life, availability of spare parts, and ease of maintenance.
- Cost: Finally, consider the cost of the hydraulic cylinders, including the initial purchase price, installation costs, and long-term maintenance expenses. While it is essential to find a cost-effective solution, prioritize quality and performance to ensure safe and efficient operation.
Can you provide real-world examples of machinery that heavily rely on hydraulic cylinders?
Hydraulic cylinders are widely used in various industries and applications due to their ability to provide powerful and precise linear motion. They play a crucial role in enabling the operation of heavy machinery that requires controlled force and movement. Here are some real-world examples of machinery that heavily rely on hydraulic cylinders:
1. Construction Equipment:
– Hydraulic cylinders are extensively used in construction machinery, such as excavators, bulldozers, loaders, and cranes. These machines rely on hydraulic cylinders to perform tasks like lifting heavy loads, extending and retracting booms, tilting buckets, and controlling the movement of various components. Hydraulic cylinders provide the power and precision required to handle the demanding conditions and heavy loads encountered in construction projects.
2. Agricultural Machinery:
– Many agricultural machines, including tractors, combine harvesters, and sprayers, utilize hydraulic cylinders for critical operations. Hydraulic cylinders are used to control the movement of attachments, such as front loaders, backhoes, and plows. They enable functions like lifting and lowering implements, adjusting cutting heights, and controlling the positioning of harvesting equipment. Hydraulic cylinders enhance efficiency and productivity in agricultural operations.
3. Material Handling Equipment:
– Hydraulic cylinders are integral components of material handling equipment, such as forklifts, pallet jacks, and cranes. These machines rely on hydraulic cylinders to lift and lower loads, tilt platforms or forks, and control the movement of lifting mechanisms. Hydraulic cylinders provide the necessary strength and precision to handle heavy loads and ensure safe and efficient material handling operations.
4. Industrial Machinery:
– Various industrial machinery and equipment heavily rely on hydraulic cylinders for critical functions. Examples include hydraulic presses, injection molding machines, metal-forming machines, and hydraulic-powered robots. Hydraulic cylinders enable precise control of force and movement in these applications, allowing for accurate shaping, pressing, and assembly processes.
5. Mining Equipment:
– Hydraulic cylinders are extensively used in mining machinery and equipment. Underground mining machines, such as continuous miners and longwall shearers, utilize hydraulic cylinders for cutting, shearing, and roof support operations. Surface mining equipment, including hydraulic shovels, draglines, and haul trucks, rely on hydraulic cylinders for tasks like bucket movement, boom extension, and vehicle suspension.
6. Automotive Industry:
– The automotive industry extensively utilizes hydraulic cylinders in various applications. Hydraulic cylinders are employed in vehicle suspension systems, power steering systems, convertible tops, and hydraulic brake systems. They enable smooth and controlled movement, precise steering, and efficient braking in automobiles.
7. Aerospace and Aviation:
– Hydraulic cylinders are utilized in aerospace and aviation applications, such as aircraft landing gear systems, wing flaps, and cargo handling equipment. Hydraulic cylinders provide the necessary force and control for extending and retracting landing gear, adjusting wing flaps, and operating cargo doors, ensuring safe and reliable aircraft operations.
8. Marine and Offshore Industry:
– Hydraulic cylinders are essential components in marine and offshore equipment, including ship cranes, winches, and hydraulic-powered anchor systems. They enable lifting, lowering, and positioning of heavy loads, as well as the control of various marine equipment.
These are just a few examples of machinery and industries that heavily rely on hydraulic cylinders. The versatility, power, and precise control offered by hydraulic cylinders make them indispensable in a wide range of applications, where controlled linear motion and force are essential.
editor by CX 2023-09-14
China Good quality Hydraulic Oil Cylinder Zx240-3 Zx250 Zx350 Zx360LC Arm Cylinder Assy 9246665 4628635 4630702 vacuum pump oil near me
Product Description
Hydraulic Oil Cylinder ZX240-3 ZX250 ZX350 ZX360LC Arm Cylinder Assy 9246665 4628635 4630702
Product Parameters
Product Name |
Excavator Hydraulic Cylinder |
Work Press |
7/14/16/21/31.5/37.5/63MPa, Customized |
Material |
Aluminum,Cast Iron,45# Steel,Stainless Steel |
Bore Size |
40mm–320mm,Customizable |
Shaft Diameter |
20mm–220mm,Customizable |
Stroke Length |
30mm–14100mm,Customizable |
Delivery Time |
1-7 work days |
Related Products
Boom cylinder Arm cylinder Bucket cylinder | |||||
PC40-5 | PC55U-2 | PC60-2/5/6 | PC100-/3/5/6 | PC120-3/5/6E | PC150-5 |
PC200-1/2/3 | PC200-5/6-7 | PC220-2/3/5 | PC220-6/7/8 | PC228 | PC210-6/7 |
PC270-7 | OC300-3/5/6/7 | PC350-6/7 | PC360-7 | PC400-3/5/6 | PC450-6 |
PW100-3 | |||||
HITACHI | |||||
EX60-2/3 | EX100-1 | EX120-2A | EX160-3 | EX200-1/2/3/5/6/7 | EX220-2/3/5 |
EX225 | EX300-3/5 | EX350-5 | EX400-3/5 | EX230 | EX270 |
ZX200 | ZX210 | ZX230 | ZX240-3 | ZX330 | ZX360 |
UH07-7 | UH16 | EX120-2/3 | |||
DAEWOO | |||||
DH55-6 | DH60-7 | DH130 | DH200-2 | DH220-5 | DH220-3 |
DH225-7 | DH220-7 | DH258-7 | DH280 | DH300 | DH300-5/7 |
DH290 | DH320 | ||||
VOLVO | |||||
EC210B | EC240B | EC260B | EC290B | EC360B | EC450B |
HYUNDAI | |||||
R55 | R60-5/7 | R130 | R200-5 | R210-5 | R220-5 |
R260LC-5 | R280 | R290 | R300 | R305-7 | R450-5 |
R215-7 | R210LC-3 | R335-7 | |||
KOBELCO | |||||
SK07/NI/N2 | SK60 | SK100-3/6 | SK120-1/3/5/6 | SK200-1/3/5/6/6E | SK220-3 |
SK220-3 | SK230 | SK230-6-6E | SK250-8 | SK300 | SK300-2 |
SK310 | SK330-6 | SK350-6 | SK450-6E | ||
E70 | E110 | E120 | E120B | E200B | E320 |
E320B | E320C | E320D | E300B | E300 | E312 |
E312B | E315A | E320BL | E325 | E325B | E330L |
E330D | E330C | E330B | |||
SUMITOMO | |||||
SH60 | SH100 | SH120-3 | SH200-A1/A2/A3 | SH200-3G | SH300 |
SH300-A2 | SH300-A3 | LS260 | LS280EJ | LS280FJ | |
KATO | |||||
HD250-7 | HD307 | DH400-1/7 | HE450-6-7 | HD512 | HD550-1-7 |
HD700-2/5/7 | HD800-7 | HD820 | HD820-3 | HD900-5/6 | HD1571 |
HD1250-7 | HD1430 | HD1850 |
More Breaker Brand Models
Various models of excavator (more than these)
HYUNDAI | R55 R60 R80 R130LC-3-5 R200 R200-5 R210 R215-7/9 R220-5 R225LC-7/9 R290 R290 R290LC-7 R300LC R305LC R330LC R375 R360LC-7 R450LC |
CATEEE | CATEE305.5 CATEE306 CATEE307 CATEE308 CATEE312 CATEE315 CATEE320 CATEE323 CATEE324 CATEE325 CATEE326 CATEE330 CATEE336 CATEE345 CATEE349 CATEE365 CATEE374 CATEE390 |
KOMAT SU | PC45 PC50 PC55 PC56 PC60-5-6-7 PC60-8 PC70-8 PC78 PC100-3 PC120-6 PC130-7 PC200-7/8 PC220 PC270 PC240 PC300-6/7 PC360 PC400-6/7/8 PC450-6 PC600-6 PC650-3 PC650 PC800 PC1000 PC1200 PC1250 |
ZXAIS/HITACAI | EX35 EX40 EX55 EX60 EX60-3 ZX200 ZX210 ZX250 ZX290 ZX330 ZX470 EX1000 EX1200 |
VOLVO | EC55 EC60 EC140BP EW145BP EW160BB EC210 EC240 EC290 EC360LC EC380.EC460 EC480 EC700 |
KOBELCO | SK35 SK50 SK60 SK75 SK100 SK120 SK200-1-2-3-4-5-6 SK230 SK250 SK260 SK280 SK300 SK330 SK330-6 SK350 SK400 SK450 SK480 |
DOOSAN/DAEWOO | DH35 DH55 DH60 DH55 DH60 DH80 DH80-7 DH80GOLD DH150 DH200 DH220-3-5 DH280-5 DX60-DX200-DX225 DX260 DH290 DH360 DH420 DH500 |
SUMITO MO | SH55 SH60 SH75 SH50 SH100 SH120 SH200 SH200-3-5 SH220-2-3 SH280 SH300 SH350 SH400 SH450 |
KATO | HD820 HD1571 HD1430 HD2045 HD700 |
SA NY | SY55 SY60 SY65 SY70 SY75 SY85 SY95 SY115 SY135 SY155 SY195 SY200 SY205 SY215 SY220 SY225 SY235 SY245 SY285 SY305 SY335 SY365 SY375 SY395 SY415 SY485 |
LIUGONG | CLG904 CLG9055 CLG906 CLG907 CLG9075 CLG908 CLG915 CLG150 CLG920 CLG921 CLG922 CLG225 CLG924 CLG925 CLG933 CLG936 CLG939 CLG942 CLG948 CLG950 CLG952 CLG200 CLG205 CLG220 CLG225 |
KUBOTA | KX135 KX185 KX155 KX161 KX163 KX165 KX183 |
IHI | IHI35 IHI50 IHI60 IHI55 IHI80 IHI100 |
XCM G | XE55 XE60 XE65 XE75 XE80 XE85 XE135 XE150 XE155 XE200 XE205 XE215 XE225 XE245 XE270 XE305 XE335 XE370 XE380 XE400 XE470 XE490 XE700 |
YANMAR | ViO35 ViO55 ViO75 |
CASE | CX50 CX55 CX58 CX75 CX210 CX240 CX290 CX330 |
YUCHAI | YC35 YC50 YC55 YC60 YC65 YC85 YC135 YC230 |
JCB | JS130 JS210 JS220 JS290 JS330 |
Main Product
Excavator Bucket Boom Arm Cylinder1.Rod seal:superior quality named-brand seals improve a longer life and seal effect polyurethane U-packing rod seals
buffer seals-bonded-to-metal wiper seals custom seals available
2.Skived&burnished or vertical honing tube assures the concentricity and straightness
3.Bushing:Hardened steel bushing or copper bushing
4.Eye:All eyes are made of forged high strength steel improve cylinder not only in appearance but in mechanical performance
5.Rod:Induction hardened prior to chrome plating enhances the surface hardness,enhanced chrome plating improve corrosion resistence and anti-scratch performance
6.Piston:High pressure piston sealing material nylon seals.High precision machining maximize the consistency of parts.
Company Profile
Xihu (West Lake) Dis.an Machine Equipment Co., Ltd.
HangZhou Xihu (West Lake) Dis.an Machinery Co., Ltd (EB Seals) is a professional supplier for hydraulic breaker parts and excavator parts and OEM hydraulic seals manufacturer. We specialize in completed seal kits and separate seals for hydraulic breaker and excavator more than Ten years in HangZhou, China.
HangZhou Xihu (West Lake) Dis.an supply almost all brands breakers’ parts like Seal kits, Diaphragm, Piston, Chisel, Wear Bush upper and lower, Rod Pin, Through Bolts, Side Bolts, Control Valve,Front Head, Cylinder, Accumulator, N2 Gas Charging Kit, etc. We insist on high quality parts with genuine and OEM after market replacement parts.
Specializes in:
–Hydraulic hammer breaker;
–Hydraulic breaker parts.
FAQ
Q1. How many days for the delivery time ?
It is about 3-7 working days after the order confirmation.
Q2. What kind of payments you accept?
Now we accept T/T, L/C or Western Union, other terms also could be negotiated, Recommended Trade Assurance to guarantee buyer’s property.
Q3. Are you able to manufacturing products according to customer’s design?
Sure, we have made many special orders from oversea for 10 years since 2571. So we have enough ability to deal with any cases. OEM certificate is available to provided.
Q4. What’s your advantages in the machinery manufacturing industry?
Fast delivery time, High quality products, Best customer service, Adopting the latest production technology.
Q5. Which countries have you been exported recently?
Canada, Australia, Peru, Egypt, Brazil, Mexico, South Africa, etc.
Q6. Are you sure that your product will fit my hydraulic breaker?
We have different brand hydraulic oil cylinder. Show me your model number, and we can give you best match products.
Q7. How about the Q7.packing of the goods?
Standard export package, wood cases, or as customers’ demands.
After-sales Service: | Online |
---|---|
Warranty: | 3 Month |
Type: | Excavator Bucket |
Application: | Excavator |
Certification: | CE |
Condition: | New |
Customization: |
Available
|
|
---|
Can hydraulic cylinders be used for precise operations like CNC machining or molding?
Yes, hydraulic cylinders can be used for precise operations like CNC machining or molding. While hydraulic systems are commonly associated with heavy-duty applications, they can also provide the necessary precision and control required for precise operations in CNC machining and molding processes. Here’s a detailed explanation of how hydraulic cylinders can be utilized for such precise operations:
1. Force and Control:
– Hydraulic cylinders are capable of generating substantial force, which is essential for precise operations in CNC machining and molding. By using hydraulic pressure, the cylinders can deliver the required force to cut or shape materials accurately or exert pressure for molding operations. The hydraulic system allows precise control over the force applied, ensuring consistent and reliable performance.
2. Adjustable Speed and Positioning:
– Hydraulic cylinders offer adjustable speed and precise positioning capabilities, making them suitable for precise operations. By controlling the flow of hydraulic fluid, the speed of the cylinder’s movement can be adjusted according to specific requirements. This adaptability allows for fine-tuning the machining or molding process, achieving the desired precision in material removal or shaping. Hydraulic systems also enable accurate positioning of tools or molds, ensuring precise operations.
3. Integrated Feedback Systems:
– Advanced hydraulic systems can incorporate feedback sensors and control mechanisms to enhance precision in CNC machining and molding. These sensors provide real-time information about the position, speed, and force exerted by the hydraulic cylinders. The control system processes this data and adjusts the flow of hydraulic fluid accordingly, allowing for precise and accurate control over the operations. The feedback systems help maintain consistent performance and compensate for any deviations, ensuring high precision.
4. Damping and Vibration Control:
– Hydraulic cylinders can be equipped with damping mechanisms to minimize vibrations and ensure stability during CNC machining or molding operations. Vibrations can negatively impact precision by causing tool chatter or material deformation. By incorporating cushioning or damping features, hydraulic cylinders help absorb shocks and suppress vibrations, resulting in smoother and more accurate operations.
5. Customization and Adaptability:
– Hydraulic cylinders can be customized and adapted to meet the specific requirements of CNC machining or molding processes. Engineers can design cylinders with unique dimensions, stroke lengths, mounting options, and sealing arrangements to fit into equipment or systems with precise specifications. Customized hydraulic cylinders ensure optimal performance and compatibility for precise operations, enabling seamless integration into CNC machines or molding equipment.
6. Energy Efficiency:
– Hydraulic systems can be designed to be energy-efficient, contributing to cost savings in CNC machining or molding operations. By utilizing variable speed pumps, efficient control valves, and well-designed hydraulic circuits, energy consumption can be optimized. This efficiency reduces heat generation, leading to improved stability and precision in operations while minimizing energy costs.
7. Maintenance and Calibration:
– Regular maintenance and calibration of hydraulic systems are essential to maintain their precision in CNC machining or molding applications. Proper lubrication, inspection of seals, and replacement of worn-out components help ensure optimal performance. Regular calibration of control systems and feedback sensors ensures accurate readings and reliable operation, contributing to precision in machining or molding processes.
In summary, hydraulic cylinders can be effectively used for precise operations like CNC machining or molding. Their ability to generate substantial force, adjustable speed and positioning, integration with feedback systems, damping and vibration control, customization and adaptability, energy efficiency, and proper maintenance contribute to achieving the required precision in these operations. By leveraging the strengths of hydraulic systems, manufacturers can enhance the accuracy and reliability of CNC machining or molding processes, resulting in high-quality products and improved productivity.
Handling the Challenges of Minimizing Fluid Leaks and Contamination in Hydraulic Cylinders
Hydraulic cylinders face challenges when it comes to minimizing fluid leaks and contamination, as these issues can impact the performance, reliability, and lifespan of the system. However, there are several measures and design considerations that help address these challenges effectively. Let’s explore how hydraulic cylinders handle the challenges of minimizing fluid leaks and contamination:
- Sealing Systems: Hydraulic cylinders employ advanced sealing systems to prevent fluid leaks. These systems typically include various types of seals, such as piston seals, rod seals, and wiper seals. The seals are designed to create a tight and reliable barrier between the moving components of the cylinder and the external environment, minimizing the risk of fluid leakage.
- Seal Material Selection: The choice of seal materials is crucial in minimizing fluid leaks and contamination. Hydraulic cylinder manufacturers carefully select seal materials that are compatible with the hydraulic fluid used and resistant to wear, abrasion, and chemical degradation. This ensures the longevity and effectiveness of the seals, reducing the likelihood of leaks or premature seal failure.
- Proper Installation and Maintenance: Ensuring proper installation and regular maintenance of hydraulic cylinders is essential for minimizing fluid leaks and contamination. During installation, attention should be given to proper alignment, torqueing of bolts, and adherence to recommended procedures. Regular maintenance includes inspecting seals, replacing worn-out components, and addressing any signs of leakage promptly. Proper maintenance practices help identify and rectify issues before they escalate and cause significant problems.
- Contamination Control: Hydraulic cylinders incorporate measures to control contamination and maintain fluid cleanliness. This includes the use of filtration systems, such as in-line filters, to remove particles and contaminants from the hydraulic fluid. Additionally, hydraulic reservoirs often have breathers and desiccant filters to prevent moisture and airborne contaminants from entering the system. By controlling contamination, hydraulic cylinders minimize the risk of damage to internal components and maintain optimal system performance.
- Environmental Protection: Hydraulic cylinders may be equipped with protective features to safeguard against external contaminants. For example, bellows or protective boots can be installed to shield the rod and seals from debris, dirt, or moisture present in the operating environment. These protective measures help extend the life of the seals and enhance the overall reliability of the hydraulic cylinder.
In summary, hydraulic cylinders employ sealing systems, appropriate seal materials, proper installation and maintenance practices, contamination control measures, and environmental protection features to handle the challenges of minimizing fluid leaks and contamination. By implementing these measures, manufacturers can ensure reliable and long-lasting hydraulic cylinder performance, minimize the risk of fluid leakage, and maintain the cleanliness of the hydraulic system.
How do hydraulic cylinders accommodate variations in stroke length and force requirements?
Hydraulic cylinders are designed to accommodate variations in stroke length and force requirements, providing flexibility and adaptability for different applications. They can be tailored to meet specific needs by considering factors such as piston diameter, rod diameter, hydraulic pressure, and cylinder design. Here’s a detailed explanation of how hydraulic cylinders accommodate variations in stroke length and force requirements:
1. Cylinder Size and Design:
– Hydraulic cylinders come in various sizes and designs to accommodate different stroke lengths and force requirements. The cylinder’s diameter, piston area, and rod diameter are key factors that determine the force output. Larger cylinder diameters and piston areas can generate greater force, while smaller diameters are suitable for applications requiring lower force. By selecting the appropriate cylinder size and design, stroke lengths and force requirements can be effectively accommodated.
2. Piston and Rod Configurations:
– Hydraulic cylinders can be designed with different piston and rod configurations to accommodate variations in stroke length. Single-acting cylinders have a single piston and can provide a stroke in one direction. Double-acting cylinders have a piston on both sides, allowing for strokes in both directions. Telescopic cylinders consist of multiple stages that can extend and retract, providing a longer stroke length compared to standard cylinders. By selecting the appropriate piston and rod configuration, the desired stroke length can be achieved.
3. Hydraulic Pressure and Flow:
– The hydraulic pressure and flow rate supplied to the cylinder play a crucial role in accommodating variations in force requirements. Increasing the hydraulic pressure increases the force output of the cylinder, enabling it to handle higher force requirements. By adjusting the pressure and flow rate through hydraulic valves and pumps, the force output can be controlled and matched to the specific requirements of the application.
4. Customization and Tailoring:
– Hydraulic cylinders can be customized and tailored to meet specific stroke length and force requirements. Manufacturers offer a wide range of cylinder sizes, stroke lengths, and force capacities to choose from. Additionally, custom-designed cylinders can be manufactured to suit unique applications with specific stroke length and force demands. By working closely with hydraulic cylinder manufacturers, it is possible to obtain cylinders that precisely match the required stroke length and force requirements.
5. Multiple Cylinders and Synchronization:
– In applications that require high force or longer stroke lengths, multiple hydraulic cylinders can be used in combination. By synchronizing the movement of multiple cylinders through the hydraulic system, the stroke length and force output can be effectively increased. Synchronization can be achieved using mechanical linkages, electronic controls, or hydraulic circuitry, ensuring coordinated movement and force distribution across the cylinders.
6. Load-Sensing and Pressure Control:
– Hydraulic systems can incorporate load-sensing and pressure control mechanisms to accommodate variations in force requirements. Load-sensing systems monitor the load demand and adjust the hydraulic pressure accordingly, ensuring that the cylinder delivers the required force without exerting excessive force. Pressure control valves regulate the pressure within the hydraulic system, allowing for precise control and adjustment of the force output based on the application’s needs.
7. Safety Considerations:
– When accommodating variations in stroke length and force requirements, it is essential to consider safety factors. Hydraulic cylinders should be selected and designed with an appropriate safety margin to handle unexpected loads or variations in operating conditions. Safety mechanisms such as overload protection valves and pressure relief valves can be incorporated to prevent damage or failure in situations where the force limits are exceeded.
By considering factors such as cylinder size and design, piston and rod configurations, hydraulic pressure and flow, customization options, synchronization, load-sensing, pressure control, and safety considerations, hydraulic cylinders can effectively accommodate variations in stroke length and force requirements. This flexibility allows hydraulic cylinders to be tailored to meet the specific demands of a wide range of applications, ensuring optimal performance and efficiency.
editor by CX 2023-09-13