Product Description
Product Description
Specifications These gas springs are used for the office chairs and various other systems where step less height adjustment is required. These gas springs bring comfort to the occupant who is carring out various activities while sitting for long periods. |
Advantages:1) ease of height adjustment with touch of a knob, to suit the mood of the occupant and to achieve the operational height conformity for comfort better productivity.2) slight cushioning effect in the block condition, resist or reduces the pressure on the back while sitting or occupying the chair for a long period.3) easy installation.4)this gas springs facilitates ergonomic characteristic in seating system. |
Areas of application 1) swivel chairs for smooth height adjustment. 2) industrial chairs and stools for ergonomic sitting in the industry. 3) dental stools and ophthalmic chairs. 4) work tables. 5) beauty parlor chairs |
Model | C | S | L | V | X | Y | F1±1KG |
MX-40mm | 40D | 210 | 250 | 135 | 60 | 10 | 500 |
MX-65mm | 65D | 215 | 280 | 160 | 60 | 10 | 480/550 |
MX-85mm | 85D | 235 | 320 | 175 | 60 | 10 | 400 |
MX-100mm | 100D | 250 | 360 | 185 | 60 | 10 | 400 |
MX-120mm | 120D | 270 | 390 | 195 | 60 | 10 | 400 |
MX-140mm | 140D | 290 | 430 | 225 | 60 | 10 | 380 |
MX-160mm | 160D | 330 | 510 | 285 | 60 | 10 | 380 |
MX-200mm | 200D | 360 | 560 | 295 | 60 | 10 | 380 |
MX-260mm | 260D | 440 | 700 | 365 | 60 | 10 | 380 |
Company Profile
Production Workshop
Packaging & Shipping
Certifications
FAQ
1.Q: What is our factory product range?
A:1)Office chair parts.Such as office chair castor wheel,shaft collar,gas spring for cabinet,office chair gas spring.
2.Q: How to order?
A:Please send us your purchase order by Email or Fax.
1) Product information:Quantitiy,Specification(size , color, logo and packing requirement),
2) Delivery time required.
3) Shipping information:Company name,Address,Phone number,Destination seaport/airport.
4) Forwarder’s contact details if there is any in China.
3.Q: How long and how to get sample from us ?
A:1) If you need some sample to text,we can make as per your request,please provide us PDF or AI for Making.
2) Lead time for making sample:about 7 days
3) The transportation freight of samples: the freight depends on the weight and packing size and your area.
4.Q: What is the payment terms for sample cost and order amount?
A:For sample, we accept the payment sent by West Union,Paypal, for orders, we can accept T/T or L/C at sight.
5.Q: What is the whole process for doing business with us ?
A:1) First,please provide details of the products you need we quote for you.
2) If price is acceptable and client need sample,we provide samples for your reference.
3) If client approve sample and require for bulk production for order,we will provide Proforma Invoice for client,and we will arrange to produce at once when we get 30% deposit.
4) We will send photos of all goods,packing,details,and B/L copy for client after goods are finished.We will arrange shipment and provide original B/L when the client pay the balance.
6.Q: Can the logo or company name to be printed on the products or package?
A:Sure.Your logo or company name can be printed on your products by stamping, printing,embossing,die cast, coating or sticker.
7.Q: What advantages we have?
A:Rich experience: We have more than 10 years experience in this industry.
That means,we can preview the problems for the orders and products.
Therefore,it will make sure to reduce the risk of bad situation to happen.
Point to point service: There is 1 sale who will serve you from inquiry to products shipped out.During the process,you just need to discuss with her for all problems and the way saves much time.
Free design: If you are not ready for the designs,the professional designers will be able to help you with it freely.
Strict QC: For each order,strict inspection will be carried out by the QC department before shipping.The bad quality will be avoid within door.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Function: | Pressed |
---|---|
Material: | Stainless Steel |
Usage: | Industrial, Furniture |
Load Type: | Compression |
Production Process: | Hot Roll |
Shape: | Cylinder |
Samples: |
US$ 30/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
How do hydraulic cylinders contribute to the overall cost-effectiveness of industrial processes?
Hydraulic cylinders play a crucial role in enhancing the overall cost-effectiveness of industrial processes. They offer several advantages and contribute to increased productivity, improved efficiency, reduced maintenance costs, and enhanced operational performance. Here’s a detailed explanation of how hydraulic cylinders contribute to the cost-effectiveness of industrial processes:
1. High Power Density:
– Hydraulic cylinders provide a high power-to-weight ratio, allowing them to generate substantial force in a compact design. This power density enables the use of smaller and lighter equipment, reducing material and manufacturing costs, and increasing the efficiency of industrial processes.
2. Precise Force and Position Control:
– Hydraulic cylinders offer precise force and position control, allowing for accurate movement and positioning of machinery or workpieces. This level of control enhances process efficiency, reduces material waste, and improves overall product quality. Precise force control also minimizes the risk of equipment damage, further reducing maintenance and repair costs.
3. High Load Handling Capacity:
– Hydraulic cylinders are known for their ability to handle high loads. They can exert significant force, making them suitable for heavy-duty industrial applications. By efficiently handling heavy loads, hydraulic cylinders contribute to increased productivity and throughput, reducing the need for additional equipment and streamlining industrial processes.
4. Flexibility and Versatility:
– Hydraulic cylinders offer a high degree of flexibility and versatility in industrial processes. They can be easily integrated into various types of machinery and equipment, allowing for diverse applications. This adaptability reduces the need for specialized equipment, resulting in cost savings and increased operational efficiency.
5. Energy Efficiency:
– Hydraulic systems, including hydraulic cylinders, can be designed to operate with high energy efficiency. By utilizing efficient hydraulic circuit designs, advanced control systems, and energy recovery mechanisms, hydraulic cylinders minimize energy waste and reduce operational costs. Energy-efficient hydraulic systems also contribute to a more sustainable and environmentally friendly industrial operation.
6. Durability and Longevity:
– Hydraulic cylinders are built to withstand demanding industrial environments and heavy usage. They are constructed with robust materials and undergo stringent quality control measures to ensure durability and longevity. Their ability to withstand harsh conditions and repetitive motion reduces the need for frequent replacements, minimizing downtime and maintenance costs.
7. Reduced Maintenance Requirements:
– Hydraulic cylinders require relatively low maintenance compared to other types of actuators. Properly designed hydraulic systems with efficient filtration and contamination control mechanisms can prevent damage to the cylinders and extend their service life. Reduced maintenance requirements result in lower downtime, decreased labor costs, and improved cost-effectiveness of industrial processes.
8. System Integration and Automation:
– Hydraulic cylinders can be seamlessly integrated into automated industrial processes. By incorporating hydraulic cylinders into automated systems, tasks can be performed with precision and repeatability, reducing human error and optimizing efficiency. Automation also allows for continuous operation, increasing productivity and overall cost-effectiveness.
9. Cost-Effective Replacement:
– In situations where hydraulic cylinders require replacement or repair, the cost-effectiveness of the process is still maintained. Hydraulic cylinders are typically modular in design, allowing for easy replacement of individual components or complete units. This modularity reduces downtime and associated costs, as only the affected components need to be replaced, rather than the entire system.
In summary, hydraulic cylinders contribute to the overall cost-effectiveness of industrial processes through their high power density, precise control capabilities, high load handling capacity, flexibility, energy efficiency, durability, reduced maintenance requirements, system integration, and cost-effective replacement options. Their ability to enhance productivity, efficiency, and operational performance while minimizing maintenance and downtime costs makes hydraulic cylinders a valuable component in various industrial applications.
Handling Challenges of Different Fluid Viscosities in Hydraulic Cylinders
Hydraulic cylinders are designed to handle the challenges associated with different fluid viscosities. The viscosity of hydraulic fluid can vary based on temperature, type of fluid used, and other factors. Hydraulic systems need to accommodate these variations to ensure optimal performance and efficiency. Let’s explore how hydraulic cylinders handle the challenges of different fluid viscosities:
- Fluid Selection: Hydraulic cylinders are designed to work with a range of hydraulic fluids, each with its specific viscosity characteristics. The selection of an appropriate fluid with the desired viscosity is crucial to ensure optimal performance. Manufacturers provide guidelines regarding the recommended viscosity range for specific hydraulic systems and cylinders. By choosing the right fluid, hydraulic cylinders can effectively handle the challenges posed by different fluid viscosities.
- Viscosity Compensation: Hydraulic systems often incorporate features to compensate for variations in fluid viscosity. For example, some hydraulic systems utilize pressure compensating valves that adjust the flow rate based on the viscosity of the fluid. This compensation ensures consistent performance across different operating conditions and fluid viscosities. Hydraulic cylinders work in conjunction with these compensation mechanisms to maintain precision and control, regardless of the fluid viscosity.
- Temperature Control: Fluid viscosity is highly dependent on temperature. Hydraulic cylinders employ various temperature control mechanisms to address the challenges posed by temperature-induced viscosity changes. Heat exchangers, coolers, and thermostatic valves are commonly used to regulate the temperature of the hydraulic fluid within the system. By controlling the fluid temperature, hydraulic cylinders can maintain the desired viscosity range, ensuring reliable and efficient operation.
- Efficient Filtration: Contaminants in hydraulic fluid can affect its viscosity and overall performance. Hydraulic systems incorporate efficient filtration systems to remove particles and impurities from the fluid. Clean fluid with the appropriate viscosity ensures optimal functioning of hydraulic cylinders. Regular maintenance and filter replacements are essential to uphold the desired fluid viscosity and prevent issues related to fluid contamination.
- Proper Lubrication: Different fluid viscosities can impact the lubrication properties within hydraulic cylinders. Lubrication is essential for minimizing friction and wear between moving parts. Hydraulic systems employ lubricants specifically formulated for the anticipated fluid viscosity range. Adequate lubrication ensures smooth operation and extends the lifespan of hydraulic cylinders, even in the presence of varying fluid viscosities.
In summary, hydraulic cylinders employ various strategies to handle the challenges associated with different fluid viscosities. By selecting appropriate fluids, incorporating viscosity compensation mechanisms, controlling temperature, implementing efficient filtration, and ensuring proper lubrication, hydraulic cylinders can accommodate variations in fluid viscosity. These measures enable hydraulic systems to deliver consistent performance, precise control, and efficient operation across different fluid viscosity ranges.
How do manufacturers ensure the quality and compatibility of hydraulic cylinders?
Manufacturers employ various measures to ensure the quality and compatibility of hydraulic cylinders, ensuring that they meet industry standards, performance requirements, and the specific needs of their customers. Here’s a detailed explanation of the methods and practices used by manufacturers to ensure the quality and compatibility of hydraulic cylinders:
1. Design and Engineering:
– Manufacturers employ skilled engineers and designers who have expertise in hydraulic systems and cylinder design. They use advanced design software and tools to create hydraulic cylinders that meet the desired specifications and performance requirements. Through careful analysis and simulation, manufacturers can ensure that the cylinders are designed to function optimally and provide the necessary force, stroke length, and reliability.
2. Material Selection:
– High-quality materials are crucial for the durability, performance, and compatibility of hydraulic cylinders. Manufacturers carefully select materials such as steel or other alloys based on their strength, corrosion resistance, and suitability for hydraulic applications. They source materials from reputable suppliers and perform quality checks to ensure that the materials meet the required standards and specifications.
3. Quality Control:
– Manufacturers implement robust quality control processes throughout the production of hydraulic cylinders. This includes rigorous inspections and tests at various stages of manufacturing, from raw material inspection to final assembly. Quality control personnel perform dimensional checks, surface finish inspections, and functional tests to verify that the cylinders meet the specified tolerances, performance criteria, and compatibility requirements.
4. Testing and Validation:
– Hydraulic cylinders undergo testing and validation procedures to ensure their performance, reliability, and compatibility. Manufacturers conduct various tests, such as pressure testing, leakage testing, load testing, and endurance testing. These tests simulate real-world operating conditions and verify that the cylinders can withstand the expected loads, pressures, and environmental factors. Additionally, manufacturers may perform compatibility testing to ensure that the cylinders can integrate seamlessly with other hydraulic system components.
5. Compliance with Standards:
– Manufacturers adhere to industry standards and regulations to ensure the quality and compatibility of hydraulic cylinders. They follow standards such as ISO 9001 for quality management systems and ISO 6020/2 or ISO 6022 for hydraulic cylinders. Compliance with these standards ensures that the manufacturing processes, quality control measures, and product performance meet internationally recognized benchmarks.
6. Certification and Accreditation:
– Manufacturers may obtain certifications and accreditations from recognized organizations to demonstrate their commitment to quality and compatibility. Certifications such as ISO certifications or third-party certifications provide assurance to customers that the hydraulic cylinders have undergone rigorous evaluations and meet specific quality and compatibility standards.
7. Customer Collaboration:
– Manufacturers actively engage with customers to understand their specific requirements and ensure compatibility. They work closely with customers to gather application-specific details, such as operating conditions, load requirements, and environmental factors. This collaborative approach allows manufacturers to customize hydraulic cylinders and provide solutions that are perfectly matched to the customer’s needs, ensuring compatibility and optimal performance.
8. Continuous Improvement:
– Manufacturers are committed to continuous improvement in their processes and products. They invest in research and development to incorporate the latest technologies, materials, and manufacturing techniques. By staying updated with industry advancements, manufacturers can enhance the quality, performance, and compatibility of their hydraulic cylinders over time.
By implementing effective design and engineering practices, selecting high-quality materials, conducting rigorous quality control, testing and validation procedures, complying with industry standards, obtaining certifications, collaborating with customers, and embracing continuous improvement, manufacturers ensure the quality and compatibility of hydraulic cylinders. These measures help to deliver reliable, high-performance cylinders that meet the diverse needs of industries and applications.
editor by CX 2024-01-11
China OEM 14liter High Pressure Oxygen Gas Cylinder Made in China vacuum pump electric
Product Description
DOT/CE/BV/ISO/SGS/TPED approval 2L/5L/7L/8L/10/14L/20L portable gas cylinders fill with oxygen gas, argon gas, co2 gas, helium gas, mixture gases ,etc.
Type | (mm) Outside Diameter |
(L) Water Capacity |
(mm) () Height (Withoutvalve) |
(Kg) (,) Weight(Without valve,cap) |
(Mpa) Working Pressure |
(mm) Design Wall Thickness |
Material Grades |
ISO102-1.8-150 | 102 | 1.8 | 325 | 3.5 | 150 | 3 | 37Mn |
ISO102-3-150 | 3 | 498 | 5.2 | ||||
ISO102-3.4-150 | 3.4 | 555 | 5.7 | ||||
ISO102-4.4-150 | 4.4 | 700 | 7.2 | ||||
ISO108-1.4-150 | 108 | 1.4 | 240 | 2.9 | 150 | 3.2 | 37Mn |
ISO108-1.8-150 | 1.8 | 285 | 3.3 | ||||
ISO108-2-150 | 2 | 310 | 3.6 | ||||
ISO108-3-150 | 3 | 437 | 4.9 | ||||
ISO108-3.6-150 | 3.6 | 515 | 5.7 | ||||
ISO108-4-150 | 4 | 565 | 6.2 | ||||
ISO108-5-150 | 5 | 692 | 7.5 | ||||
ISO140-3.4-150 | 140 | 3.4 | 321 | 5.8 | 150 | 4.1 | 37Mn |
ISO140-4-150 | 4 | 365 | 6.4 | ||||
ISO140-5-150 | 5 | 440 | 7.6 | ||||
ISO140-6-150 | 6 | 515 | 8.8 | ||||
ISO140-6.3-150 | 6.3 | 545 | 9.2 | ||||
ISO140-6.7-150 | 6.7 | 567 | 9.5 | ||||
ISO140-7-150 | 7 | 595 | 9.9 | ||||
ISO140-7.5-150 | 7.5 | 632 | 10.5 | ||||
ISO140-8-150 | 8 | 665 | 11 | ||||
ISO140-9-150 | 9 | 745 | 12.2 | ||||
ISO140-10-150 | 10 | 830 | 13.5 | ||||
ISO140-11-150 | 11 | 885 | 14.3 | ||||
ISO140-13.4-150 | 13.4 | 1070 | 17.1 | ||||
ISO140-14-150 | 14 | 1115 | 17.7 | ||||
ISO159-7-150 | 159 | 7 | 495 | 9.8 | 150 | 4.7 | 37Mn |
ISO159-8-150 | 8 | 554 | 10.8 | ||||
ISO159-9-150 | 9 | 610 | 11.7 | ||||
ISO159-10-150 | 10 | 665 | 12.7 | ||||
ISO159-11-150 | 11 | 722 | 13.7 | ||||
ISO159-12-150 | 12 | 790 | 14.8 | ||||
ISO159-12.5-150 | 12.5 | 802 | 15 | ||||
ISO159-13-150 | 13 | 833 | 15.6 | ||||
ISO159-13.4-150 | 13.4 | 855 | 16 | ||||
ISO159-13.7-150 | 13.7 | 878 | 16.3 | ||||
ISO159-14-150 | 14 | 890 | 16.5 | ||||
ISO159-15-150 | 15 | 945 | 17.5 | ||||
ISO159-16-150 | 16 | 1000 | 18.4 | ||||
ISO180-8-150 | 180 | 8 | 480 | 13.8 | 150 | 5.3 | 37Mn |
ISO180-10-150 | 10 | 570 | 16.1 | ||||
ISO180-12-150 | 12 | 660 | 18.3 | ||||
ISO180-15-150 | 15 | 790 | 21.6 | ||||
ISO180-20-150 | 20 | 1015 | 27.2 | ||||
ISO180-21-150 | 21 | 1061 | 28.3 | ||||
ISO180-21.6-150 | 21.6 | 1087 | 29 | ||||
ISO180-22.3-150 | 22.3 | 1100 | 29.4 | ||||
ISO219-20-150 | 219 | 20 | 705 | 27.8 | 150 | 6.1 | 37Mn |
ISO219-25-150 | 25 | 855 | 32.8 | ||||
ISO219-27-150 | 27 | 915 | 34.8 | ||||
ISO219-36-150 | 36 | 1185 | 43.9 | ||||
ISO219-38-150 | 38 | 1245 | 45.9 | ||||
ISO219-40-150 | 40 | 1305 | 47.8 | ||||
ISO219-45-150 | 45 | 1455 | 52.9 | ||||
ISO219-46.7-150 | 46.7 | 1505 | 54.6 | ||||
ISO219-50-150 | 50 | 1605 | 57.9 |
RECORD OF HYDROSTATIC TESTS ON CYLINDERS Time≥ 60S | ||||||||
S.N | Serial No. | The weight without valve&cap(kg) | Volumetric Capacity(L) | Total expansion(ml) | Permanent expansion(ml) | Percent of Permanent to totalexpanison(%) | Test Pressure 250Bar | Lot and Batch No. |
1 | 20T164001 | 18 | 14.2 | 74.1 | 0.9 | 1.2 | 25 | T09 |
2 | 20T164002 | 17.8 | 14.3 | 69.0 | 1 | 1.4 | 25 | T09 |
3 | 20T164003 | 17.9 | 14.2 | 74.1 | 1 | 1.4 | 25 | T09 |
4 | 20T164004 | 17.7 | 14.3 | 70.9 | 0.9 | 1.3 | 25 | T09 |
5 | 20T164005 | 18.2 | 14.3 | 69.0 | 0.9 | 1.3 | 25 | T09 |
6 | 20T164006 | 17.6 | 14.2 | 70.1 | 0.9 | 1.3 | 25 | T09 |
7 | 20T164007 | 18.3 | 14.2 | 71.1 | 1 | 1.4 | 25 | T09 |
8 | 20T164008 | 18.2 | 14.3 | 72.9 | 0.8 | 1.1 | 25 | T09 |
9 | 20T164009 | 17.5 | 14.3 | 69.0 | 0.9 | 1.3 | 25 | T09 |
10 | 20T164571 | 17.8 | 14.2 | 73.1 | 0.9 | 1.2 | 25 | T09 |
11 | 20T164011 | 18 | 14 | 71.4 | 1 | 1.4 | 25 | T09 |
12 | 20T164012 | 17.8 | 14.2 | 74.1 | 0.7 | 0.9 | 25 | T09 |
13 | 20T164013 | 18.6 | 14.2 | 71.1 | 1 | 1.4 | 25 | T09 |
14 | 20T164014 | 17.6 | 14.3 | 70.0 | 1 | 1.4 | 25 | T09 |
15 | 20T164015 | 17.9 | 14.1 | 72.2 | 0.8 | 1.1 | 25 | T09 |
16 | 20T164016 | 17.9 | 14.3 | 68.0 | 1 | 1.5 | 25 | T09 |
17 | 20T164017 | 18.1 | 14.2 | 74.1 | 0.8 | 1.1 | 25 | T09 |
18 | 20T164018 | 17.7 | 14.3 | 69.0 | 0.7 | 1.0 | 25 | T09 |
19 | 20T164019 | 17.7 | 14.3 | 70.0 | 0.7 | 1.0 | 25 | T09 |
20 | 20T164571 | 17.8 | 14.2 | 69.1 | 0.8 | 1.2 | 25 | T09 |
21 | 20T164571 | 17.7 | 14.3 | 72.9 | 0.7 | 1.0 | 25 | T09 |
22 | 20T164571 | 17.9 | 14.2 | 71.1 | 0.8 | 1.1 | 25 | T09 |
23 | 20T164571 | 18 | 14.2 | 69.1 | 0.7 | 1.0 | 25 | T09 |
24 | 20T164571 | 17.7 | 14.3 | 72.9 | 0.7 | 1.0 | 25 | T09 |
25 | 20T164571 | 17.8 | 14.3 | 71.9 | 1.2 | 1.7 | 25 | T09 |
26 | 20T164026 | 17.9 | 14.1 | 70.2 | 1 | 1.4 | 25 | T09 |
27 | 20T164571 | 17.8 | 14.2 | 73.1 | 0.7 | 1.0 | 25 | T09 |
28 | 20T164571 | 17.8 | 14.3 | 70.0 | 0.8 | 1.1 | 25 | T09 |
29 | 20T164571 | 17.8 | 14.2 | 71.1 | 1.2 | 1.7 | 25 | T09 |
30 | 20T164030 | 17.8 | 14.2 | 68.1 | 0.9 | 1.3 | 25 | T09 |
31 | 20T164031 | 17.7 | 14.3 | 72.9 | 0.9 | 1.2 | 25 | T09 |
32 | 20T164032 | 17.6 | 14.2 | 70.1 | 1 | 1.4 | 25 | T09 |
33 | 20T164033 | 17.8 | 14.2 | 74.1 | 1 | 1.4 | 25 | T09 |
34 | 20T164034 | 18 | 14 | 74.4 | 0.9 | 1.2 | 25 | T09 |
35 | 20T164035 | 17.8 | 14.2 | 70.1 | 0.9 | 1.3 | 25 | T09 |
36 | 20T164036 | 17.9 | 14.1 | 71.2 | 0.9 | 1.3 | 25 | T09 |
37 | 20T164037 | 17.9 | 14.3 | 70.0 | 1 | 1.4 | 25 | T09 |
38 | 20T164038 | 17.8 | 14.2 | 74.1 | 0.8 | 1.1 | 25 | T09 |
39 | 20T164039 | 17.9 | 14.1 | 71.2 | 0.9 | 1.3 | 25 | T09 |
40 | 20T164040 | 17.7 | 14.3 | 71.9 | 0.9 | 1.3 | 25 | T09 |
41 | 20T164041 | 17.8 | 14.2 | 69.1 | 1 | 1.4 | 25 | T09 |
42 | 20T164042 | 18 | 14.2 | 74.1 | 0.7 | 0.9 | 25 | T09 |
43 | 20T164043 | 18.4 | 14.2 | 71.1 | 1 | 1.4 | 25 | T09 |
44 | 20T164044 | 17.6 | 14.4 | 68.8 | 1 | 1.5 | 25 | T09 |
45 | 20T164045 | 17.8 | 14.2 | 71.1 | 0.8 | 1.1 | 25 | T09 |
46 | 20T164046 | 17.9 | 14.1 | 70.2 | 1 | 1.4 | 25 | T09 |
47 | 20T164047 | 17.8 | 14.2 | 74.1 | 0.8 | 1.1 | 25 | T09 |
48 | 20T164048 | 18 | 14.2 | 70.1 | 0.7 | 1.0 | 25 | T09 |
49 | 20T164049 | 17.9 | 14.1 | 72.2 | 0.7 | 1.0 | 25 | T09 |
50 | 20T164050 | 17.8 | 14.2 | 69.1 | 0.8 | 1.2 | 25 | T09 |
Established in 1998. Our company possesses 3 production lines for production of various seamless gas cylinders. The annual production and sale for gas cylinders of below 20L for 600 thousand pieces, accounting for 90% domestic share in small size gas cylinder market. The recently set up new production line for 0.4L-80L emergency respirator, colliery escape capsule and refuge chamber has the annual production of 700 thousand pieces of cylinders. By the year 2013, the total specifications we do ascent to 109 types to meet different customers’ requirement.
Our major products are oxygen cylinder, nitrogen cylinder, carbon dioxide cylinder, argon cylinder, other industrial cylinder, medical oxygen supply unit, etc., with wide application for fields of medical apparatus and instruments, engineering machinery, colliery rescue, gas industry, welding-cutting machinery, and chemical industry. Our cryogenic vessels production line mainly produce cryogenic liquid storage tanks, welding insulation cylinders, cryogenic reaction device, cryogenic tanks, cryogenic ISO tank container and air temperature vaporizer.
So far our products are enjoying good markets at home and exporting to European and American countries, the Middle East countries, West Asia, as well as South and East Asia countries.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Material: | Steel |
---|---|
Usage: | Oxygen |
Structure: | General Cylinder |
Power: | Hydraulic |
Standard: | Standard |
Pressure Direction: | Single-acting Cylinder |
Customization: |
Available
|
|
---|
Can hydraulic cylinders be retrofitted onto existing equipment for improved functionality?
Yes, hydraulic cylinders can be retrofitted onto existing equipment to enhance functionality and performance. Retrofitting hydraulic cylinders onto existing machinery or equipment offers several benefits, including increased power, improved control, enhanced precision, and versatility. Here’s a detailed explanation of how hydraulic cylinders can be retrofitted onto existing equipment for improved functionality:
1. Increased Power:
– Retrofitting hydraulic cylinders allows for the addition of hydraulic power to the existing equipment. By integrating hydraulic cylinders, the equipment can generate higher forces and handle heavier loads. This increased power enables the equipment to perform tasks that were previously challenging or impossible. For example, a retrofit hydraulic cylinder on a crane can enhance its lifting capacity and enable it to handle heavier loads more efficiently.
2. Improved Control:
– Hydraulic cylinders provide precise control over the motion and positioning of equipment. By retrofitting hydraulic cylinders, operators gain better control over the speed, force, and direction of movement. The addition of hydraulic control valves and a hydraulic power unit allows for fine-tuning of the equipment’s operation. Improved control facilitates safer and more efficient operation, reducing the risk of damage and improving overall productivity.
3. Enhanced Precision:
– Retrofitting hydraulic cylinders onto existing equipment can significantly improve precision and accuracy. Hydraulic systems offer precise control over movement, enabling smooth and controlled motion. This enhanced precision is beneficial in applications where precise positioning or repetitive movements are required. For instance, retrofitting hydraulic cylinders onto a robotic arm can enhance its accuracy and repeatability, making it more suitable for tasks that demand high precision.
4. Versatility and Adaptability:
– Retrofitting hydraulic cylinders can increase the versatility and adaptability of existing equipment. Hydraulic systems can be easily integrated with various types of machinery, allowing for the utilization of hydraulic power across different applications. The modular nature of hydraulic components facilitates the retrofitting process, enabling the equipment to perform a broader range of tasks. This versatility is particularly advantageous in industries where equipment needs to adapt to changing operational requirements.
5. Retrofit Kits and Customization:
– Manufacturers often provide retrofit kits that include all the necessary components for integrating hydraulic cylinders onto existing equipment. These kits typically consist of hydraulic cylinders, mounting brackets, hoses, fittings, control valves, and other required accessories. Retrofit kits simplify the retrofitting process and ensure compatibility between the hydraulic components and the existing equipment. Additionally, manufacturers can offer customization options to tailor the retrofit solution to specific equipment and application needs.
6. Cost-Effective Solution:
– Retrofitting hydraulic cylinders onto existing equipment can be a cost-effective solution compared to purchasing new machinery. By leveraging the existing equipment’s structural framework and mechanical components, the overall cost of upgrading can be reduced. Retrofitting also minimizes downtime since the equipment does not need to be completely replaced. Furthermore, the improved functionality and performance resulting from the retrofit can lead to increased productivity and cost savings in the long run.
7. Professional Installation and Expertise:
– Retrofitting hydraulic cylinders onto existing equipment often requires professional installation and expertise. Working with experienced hydraulic system integrators or manufacturers ensures proper installation, compatibility, and optimal performance of the retrofit solution. These professionals can assess the existing equipment, recommend suitable hydraulic components, and carry out the retrofitting process efficiently. Their knowledge and expertise contribute to the successful integration of hydraulic cylinders and the overall improvement of equipment functionality.
In summary, hydraulic cylinders can indeed be retrofitted onto existing equipment to improve functionality. This retrofitting process offers advantages such as increased power, improved control, enhanced precision, versatility, cost-effectiveness, and access to retrofit kits and customization options. By retrofitting hydraulic cylinders, existing equipment can be upgraded to meet evolving operational needs, extend its lifespan, and enhance overall performance.
What considerations are important when selecting hydraulic cylinders for mobile equipment?
To select hydraulic cylinders for mobile equipment, several important considerations need to be taken into account. Here are the key factors to consider:
- Load Capacity: Determine the maximum load or force that the hydraulic cylinder will need to support. This includes both the static load and any dynamic or shock loads that may be encountered during operation.
- Stroke Length: Consider the required stroke length, which is the distance the hydraulic cylinder can extend and retract. Ensure that the stroke length is sufficient for the specific application and range of motion needed.
- Operating Pressure: Determine the maximum operating pressure required for the hydraulic system. This will depend on the load and the specific application. Select a hydraulic cylinder with a pressure rating that exceeds the maximum operating pressure to ensure safety and durability.
- Mounting Style: Consider the available space and the mounting requirements of the mobile equipment. Hydraulic cylinders come in various mounting styles, such as flange, trunnion, clevis, and pivot, among others. Choose a mounting style that is compatible with the equipment and provides the necessary support and stability.
- Size and Weight: Take into account the physical dimensions and weight of the hydraulic cylinder. Ensure that it can fit within the available space and that the equipment can support its weight without compromising performance or safety.
- Speed and Precision: Evaluate the required speed and precision of the hydraulic cylinder’s movement. Different cylinder designs and configurations can affect the speed and accuracy of motion. Consider factors such as cylinder bore size, rod diameter, and the presence of cushioning or dampening features.
- Environmental Factors: Assess the operating environment of the mobile equipment. Consider factors such as temperature extremes, exposure to moisture, dust, and chemicals. Select hydraulic cylinders with appropriate seals and coatings that can withstand the environmental conditions and prevent corrosion or damage.
- Reliability and Maintenance: Consider the reliability and maintenance requirements of the hydraulic cylinders. Look for reputable manufacturers that provide high-quality products with a proven track record. Evaluate factors such as expected service life, availability of spare parts, and ease of maintenance.
- Cost: Finally, consider the cost of the hydraulic cylinders, including the initial purchase price, installation costs, and long-term maintenance expenses. While it is essential to find a cost-effective solution, prioritize quality and performance to ensure safe and efficient operation.
Can you explain the role and significance of hydraulic cylinders in machinery?
Hydraulic cylinders play a crucial role in machinery across various industries. They are essential components that provide controlled and powerful linear motion, enabling the operation of heavy equipment and facilitating numerous tasks. The role and significance of hydraulic cylinders in machinery can be explained in detail as follows:
Role of Hydraulic Cylinders:
– Conversion of Hydraulic Energy: Hydraulic cylinders convert hydraulic energy, typically in the form of pressurized hydraulic fluid, into linear force and motion. This conversion allows machinery to perform tasks such as lifting, pushing, pulling, clamping, tilting, and controlling various mechanisms.
– Generation of Linear Motion: Hydraulic cylinders generate linear motion by utilizing the principles of Pascal’s law. When hydraulic fluid is directed into one side of the cylinder, it applies pressure on the piston, resulting in linear movement of the piston and the attached piston rod. This linear motion can be used to actuate other components within the machinery or directly perform the required task.
– Force Generation: Hydraulic cylinders are capable of generating high forces due to the hydraulic pressure applied to the piston. The force output of a hydraulic cylinder depends on the surface area of the piston and the pressure of the hydraulic fluid. This force allows machinery to exert significant power for lifting heavy loads, applying pressure, or overcoming resistance.
– Precise Control: Hydraulic cylinders offer precise control over the linear motion and force exerted. By regulating the flow of hydraulic fluid, the speed and direction of the cylinder’s movement can be accurately adjusted. This level of control is crucial in machinery that requires precise positioning, delicate movements, or synchronization of multiple cylinders.
– Integration with Hydraulic Systems: Hydraulic cylinders are integral parts of hydraulic systems used in machinery. They work in conjunction with hydraulic pumps, valves, and actuators to create a complete hydraulic circuit. This integration allows for efficient power transmission, control, and coordination of various machine functions.
Significance of Hydraulic Cylinders:
– Heavy Equipment Operation: Hydraulic cylinders are vital in heavy machinery used in construction, mining, agriculture, material handling, and other industries. They enable the lifting and movement of heavy loads, the operation of attachments, and the performance of tasks that require high force and precision.
– Versatility and Adaptability: Hydraulic cylinders are versatile components that can be designed and tailored to meet specific machinery requirements. They can be integrated into various types of equipment and customized based on factors such as force capacity, stroke length, speed, and mounting options. This adaptability makes hydraulic cylinders suitable for diverse applications.
– Durability and Reliability: Hydraulic cylinders are built to withstand rigorous operating conditions, including high pressures, heavy loads, and continuous use. They are designed with robust materials, precise machining, and effective sealing systems to ensure durability and reliability over extended periods of operation.
– Safety and Load Control: Hydraulic cylinders provide safe and controlled operation in machinery. They offer overload protection mechanisms, such as relief valves, to prevent damage caused by excessive force or pressure. Additionally, hydraulic cylinders allow for precise load control, minimizing the risk of accidents during lifting, lowering, or positioning of heavy loads.
– Compact Design: Hydraulic cylinders offer a high power-to-size ratio, allowing for compact machinery design. Their relatively small size compared to the forces they can generate makes them suitable for applications where space is limited or weight restrictions apply.
– Energy Efficiency: Hydraulic cylinders contribute to energy efficiency in machinery. The use of hydraulic systems allows for the transfer of power over long distances without significant power losses. Additionally, hydraulic cylinders can incorporate energy-saving features such as load-sensing technology and regenerative circuits, reducing energy consumption.
Overall, hydraulic cylinders play a vital role in machinery by providing controlled and powerful linear motion. Their significance lies in their ability to convert hydraulic energy, generate high forces, offer precise control, integrate with hydraulic systems, and facilitate the operation of heavy equipment across various industries. Hydraulic cylinders contribute to increased productivity, safety, and efficiency in machinery applications, making them indispensable components in modern-day engineering.
editor by CX 2023-12-26
China Custom Wholesale 0.6L Food Grade Soda CO2 Aluminum Gas Cylinder with DOT vacuum pump and compressor
Product Description
0.6L CO2 Aluminum Cylinder with Euro Certificate
Main Feature:
Model:AL06
Name: Soda CO2 cylinder
Material: seamless aluminium alloy
Gas type : CO2
Color: Silver
Type: Soda co2 tank
Water Capacity: 0.6L
Working Pressure: 150bar
Test Pressure: 225bar
Cylinders are made from high strength Aluminum Alloy 6061, reliable in durability, fracture toughness and resistance to tearing and cracking.
Highly corrosion-resistant interior and exterior-ideal for wet gases.
Cylinders perform well at low temperatures.
Lightweight–up to 40 percent lighter than comparable steel cylinders and in Consistent weight, consistent thickness resist damage.
Brushed external surface provides a low-maintenance finish.
Cylinders meet or exceed all regulatory standards worldwide.
Cylinders cycle-tested in excess of 120,000 cycles at service pressure. Excess of 12000 cycles at test pressure.
Minimum burst pressure tested to 2.5 times service pressure without failure.
* Valve & Threads can be specified & installed CHINAMFG Request.
* Standard Finishing is RAL300 Red Powder Coated.
* Markings according to Standard Specifications, Additional Markings Available Ipon Request.
certificate:
specification:
Type | (mm) Outside Diameter |
(L) Water Capacity |
(mm) Height (Withoutvalve) |
(Kg) Weight(Without valve,cap) |
(Mpa) Working Pressure |
(mm) Design Wall Thickness |
LW-60-0.5-20H | 60 | 0.5 | 285 | 0.6 | 200 | 3.1 |
LW-75-0.7-15H | 75 | 0.7 | 295 | 0.9 | 150 | 4 |
LW-82-0.7-15H | 82 | 0.7 | 235 | 0.9 | 150 | 4.2 |
LW-89-1.0-15H | 89 | 1.0 | 269 | 1.2 | 150 | 4.5 |
LW-89-1.4-15H | 89 | 1.4 | 345 | 1.4 | 150 | 4.5 |
LW-108-1.0-15H | 108 | 1.0 | 210 | 1.3 | 150 | 5.5 |
LW-108-1.4-15H | 108 | 1.4 | 264 | 1.6 | 150 | 5.5 |
LW-108-2.0-15H | 108 | 2.0 | 346 | 2.1 | 150 | 5.5 |
LW-108-2.5-15H | 108 | 2.5 | 413 | 2.5 | 150 | 5.5 |
LW-120-2.0-15H | 120 | 2.0 | 320 | 2.7 | 150 | 6.1 |
LW-120-2.5-15H | 120 | 2.5 | 369 | 3.0 | 150 | 6.1 |
LW-120-2.8-15H | 120 | 2.8 | 398 | 3.2 | 150 | 6.1 |
LW-120-3.2-15H | 120 | 3.2 | 437 | 3.5 | 150 | 6.1 |
LW-140-4.0-15H | 140 | 4.0 | 420 | 4.2 | 150 | 7.1 |
LW-140-5.0-15H | 140 | 5.0 | 500 | 4.9 | 150 | 7.1 |
LW-140-6.0-15H | 140 | 6.0 | 580 | 5.6 | 150 | 7.1 |
LW-140-8.0-15H | 140 | 8.0 | 741 | 7.2 | 150 | 7.1 |
LW-140-5.0-20H | 140 | 5.0 | 525 | 6.3 | 200 | 9.3 |
LW-140-6.0-20H | 140 | 6.0 | 652 | 7.98 | 200 | 9.3 |
LW-159-10.0-15H | 159 | 10.0 | 730 | 8.8 | 150 | 8 |
LW-184-9.0-20H | 184 | 9.0 | 575 | 12.0 | 200 | 12.2 |
LW-184-10.0-20H | 184 | 10.0 | 620 | 12.9 | 200 | 12.2 |
LW-184-11.0-20H | 184 | 11.0 | 665 | 14.2 | 200 | 12.2 |
LW-184-12.0-20H | 184 | 12.0 | 710 | 15.4 | 200 | 12.2 |
LW-203-12-15H | 203 | 12.0 | 567 | 11.8 | 150 | 10.3 |
LW-203-15-15H | 203 | 20.0 | 873 | 17.0 | 150 | 10.3 |
LW-203-21.3-15H | 203 | 21.3 | 962 | 19.9 | 150 | 10.3 |
LW-204-12-20H | 204 | 12.0 | 610 | 16.5 | 200 | 13.4 |
LW-204-15-20H | 204 | 15.0 | 735 | 18.7 | 200 | 13.4 |
LW-204-20-20H | 204 | 20.0 | 940 | 23.4 | 200 | 13.4 |
LW-232-29.5-15H | 232 | 29.5 | 994 | 30.2 | 150 | 11.7 |
LW-232-30.3-15H | 232 | 30.0 | 1571 | 30.5 | 150 | 11.7 |
LW-232-33.4-15H | 232 | 33.4 | 1126 | 31.3 | 150 | 11.7 |
LW-232-40.0-15H | 232 | 40.0 | 1340 | 36.5 | 150 | 11.7 |
LW-232-20.0-20H | 232 | 20.0 | 750 | 26.9 | 200 | 15.4 |
LW-232-26.0-20H | 232 | 26.0 | 921 | 30.7 | 200 | 15.4 |
LW-232-30.0-20H | 232 | 30.0 | 1076 | 36.4 | 200 | 15.4 |
LW-232-31.5-20H | 232 | 31.5 | 1096 | 38.0 | 200 | 15.4 |
LW-232-40.0-20H | 232 | 40.0 | 1365 | 44.1 | 200 | 15.4 |
LW-250-40.0-15H | 250 | 40.0 | 1150 | 36.7 | 150 | 12.6 |
LW-250-46.4-15H | 250 | 46.4 | 1305 | 38.7 | 150 | 12.6 |
LW-250-47.5-15H | 250 | 47.5 | 1340 | 42.0 | 150 | 12.6 |
LW-250-50.0-15H | 250 | 50.0 | 1590 | 39.0 | 200 | 12.6 |
LW-250-40.0-20H | 250 | 40.0 | 1227 | 46.3 | 200 | 16.5 |
LW-250-50.0-20H | 250 | 50.0 | 1500 | 56.0 | 200 | 16. |
Company profile:
Our factory aluminium jar-making co.,ltd. is a professional filter capacitor shell aluminum shell and the development and production of a wholly-owned enterprise. Founded in 1988, now covers an area of 80,000 square meters, staff 320 people, including engineers and technicians 25 people. Since its inception, that is fully committed to the manufacture of aluminum cans , aluminum semi-finished products processing and metallurgy and processing such as special-shaped parts, with a strong technical force and good quality staff, and constantly develop new products, develop new markets,
Growing scale of production. Products not only meet the domestic demand, but also exported to Europe, America and Southeast Asia regions, well received by customers and vendors praise!
Company’s existing 3 series of products, Capacitor aluminum shell and cover, fuel filter housing and shelters, EFI pump casing. The company pays great attention to product quality, strictly follow the concept of lean production and methods of management of production. And has achieved ISO9001:2008quality system.certification.ISO14001:2004, EN ISO7866:2012+AC2014 environmental management system certification and ISO/TS16949: 2009auto parts industry certification.
The company in line to provide customers with the fastest, most comprehensive and efficient services for the purpose, sincerely welcome friends home and abroad to write to.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Function: | Cream Charger |
---|---|
Application: | Gas |
Material: | Aluminum Alloy |
Storage Medium: | Food Grade CO2 |
Capacity: | 0.6L |
Size: | 60mm*332mm |
Customization: |
Available
|
|
---|
How do manufacturers ensure the durability and reliability of hydraulic cylinders?
Manufacturers employ various strategies and techniques to ensure the durability and reliability of hydraulic cylinders. These measures are crucial as hydraulic cylinders are often subjected to demanding operating conditions and heavy loads. To ensure their longevity and dependable performance, manufacturers focus on the following aspects:
1. High-Quality Materials:
– Manufacturers use high-quality materials in the construction of hydraulic cylinders. Components such as cylinder barrels, piston rods, seals, and bearings are made from materials that possess excellent strength, corrosion resistance, and wear resistance properties. Common materials used include high-grade steel alloys, chrome-plated rods, and specialized coatings. The selection of appropriate materials ensures that hydraulic cylinders can withstand the stresses, pressures, and environmental conditions they encounter during operation.
2. Robust Design:
– Hydraulic cylinders are designed to withstand high loads and harsh operating conditions. Manufacturers use computer-aided design (CAD) software and finite element analysis (FEA) techniques to optimize the cylinder’s structural integrity and performance. The design includes factors such as proper wall thickness, reinforcement in critical areas, and appropriate sizing of components. Robust design practices ensure that hydraulic cylinders can withstand the forces and stresses they encounter, preventing premature failure and ensuring durability.
3. Quality Manufacturing Processes:
– Manufacturers follow stringent quality control measures during the manufacturing processes of hydraulic cylinders. These processes include precision machining, welding, heat treatment, and surface finishing. Skilled technicians and advanced machinery are employed to ensure dimensional accuracy, proper fitment of components, and overall quality. By adhering to strict manufacturing processes and quality standards, manufacturers can produce hydraulic cylinders with consistent performance and reliability.
4. Sealing Technology:
– The sealing system of hydraulic cylinders is critical for their durability and reliability. Manufacturers utilize advanced sealing technologies such as lip seals, O-rings, and composite seals to prevent fluid leakage and ingress of contaminants. Properly designed and high-quality seals ensure that hydraulic cylinders can maintain their performance over extended periods. Seals are tested for their compatibility with the hydraulic fluid, pressure resistance, and resilience to environmental factors such as temperature and humidity.
5. Performance Testing:
– Manufacturers subject hydraulic cylinders to rigorous performance testing to validate their durability and reliability. These tests simulate real-world operating conditions and evaluate factors such as load capacity, pressure resistance, fatigue life, and leakage. Performance testing helps identify any design flaws or weaknesses in the hydraulic cylinder and allows manufacturers to make necessary improvements. By conducting thorough performance testing, manufacturers can ensure that hydraulic cylinders meet or exceed the required performance standards.
6. Compliance with Industry Standards:
– Manufacturers adhere to industry standards and regulations to ensure the durability and reliability of hydraulic cylinders. These standards, such as ISO 6020/6022 and NFPA T3.6.7, provide guidelines for design, manufacturing, and performance requirements. By following these standards, manufacturers ensure that hydraulic cylinders are designed and built to meet specific quality and safety criteria. Compliance with industry standards helps establish a baseline for durability and reliability and instills confidence in the performance of hydraulic cylinders.
7. Regular Maintenance and Service:
– Manufacturers provide recommendations for regular maintenance and service of hydraulic cylinders. This includes guidelines for lubrication, inspection of components, and replacement of wear parts such as seals and bearings. Following the manufacturer’s maintenance guidelines helps ensure the long-term durability and reliability of hydraulic cylinders. Regular maintenance also allows for the early detection of potential issues, preventing major failures and extending the service life of the hydraulic cylinders.
8. Customer Support and Warranty:
– Manufacturers provide customer support and warranty services to address any issues that arise with hydraulic cylinders. They offer technical assistance, troubleshooting guidance, and replacement of defective components. The warranty ensures that customers receive reliable and durable hydraulic cylinders and provides recourse in case of any manufacturing defects or premature failures. Strong customer support and warranty policies reflect the manufacturer’s commitment to the durability and reliability of their products.
In summary, manufacturers ensure the durability and reliability of hydraulic cylinders through the use of high-quality materials, robust design practices, stringent manufacturing processes, advanced sealing technology, thorough performance testing, compliance with industry standards, regular maintenance guidelines, and customer support with warranty services. By focusing on these aspects, manufacturers can produce hydraulic cylinders that can withstand demanding conditions, provide long service life, and deliver reliable performance in various applications.
Advancements in Hydraulic Cylinder Technology Improving Corrosion Resistance
Advancements in hydraulic cylinder technology have led to significant improvements in corrosion resistance. Corrosion is a major concern in hydraulic systems, especially in environments where cylinders are exposed to moisture, chemicals, or corrosive agents. These advancements aim to enhance the durability and longevity of hydraulic cylinders. Let’s explore some of the key advancements in hydraulic cylinder technology that have improved corrosion resistance:
- Corrosion-Resistant Materials: The use of corrosion-resistant materials is a fundamental advancement in hydraulic cylinder technology. Stainless steel, for example, offers excellent resistance to corrosion, making it a popular choice in marine, offshore, and other corrosive environments. Additionally, advancements in metallurgy have led to the development of specialized alloys and coatings that provide enhanced corrosion resistance, extending the lifespan of hydraulic cylinders.
- Surface Treatments and Coatings: Various surface treatments and coatings have been developed to protect hydraulic cylinders from corrosion. These treatments can include electroplating, galvanizing, powder coating, and specialized corrosion-resistant coatings. These coatings create a barrier between the cylinder surface and corrosive elements, preventing direct contact and inhibiting the onset of corrosion. The selection of appropriate coatings depends on the specific application and environmental conditions.
- Sealing Technology: Effective sealing systems are crucial in preventing water, moisture, and contaminants from entering the cylinder and causing corrosion. Advancements in sealing technology have led to the development of high-quality seals and advanced sealing designs that offer superior resistance to corrosion. These seals are typically made from materials specifically engineered to withstand corrosive environments, ensuring long-term sealing performance and minimizing the risk of corrosion-related issues.
- Improved Surface Finishes: The surface finish of hydraulic cylinders plays a role in their resistance to corrosion. Advancements in machining and polishing techniques have allowed for smoother and more uniform surface finishes. Smoother surfaces reduce the likelihood of corrosion initiation and make it easier to clean and maintain hydraulic cylinders. Additionally, specialized finishes, such as passivation or chemical treatments, can be applied to further enhance corrosion resistance.
- Environmental Protection Features: Hydraulic cylinders can be equipped with additional features to protect against corrosion. These features may include protective boots, bellows, or shields that guard vulnerable areas from exposure to corrosive agents. By incorporating these protective elements into the design, hydraulic cylinders can withstand harsh environments and minimize the risk of corrosion-related damage.
In summary, advancements in hydraulic cylinder technology have significantly improved corrosion resistance. The use of corrosion-resistant materials, advanced surface treatments and coatings, innovative sealing technology, improved surface finishes, and the incorporation of environmental protection features have all contributed to enhanced durability and longevity of hydraulic cylinders in corrosive environments. These advancements ensure reliable performance and reduce the maintenance and replacement costs associated with corrosion-related issues.
Can hydraulic cylinders be adapted for use in both industrial and mobile equipment?
Yes, hydraulic cylinders can be adapted for use in both industrial and mobile equipment. The versatility and adaptability of hydraulic systems make them suitable for a wide range of applications across various industries. Here’s a detailed explanation:
1. Industrial Equipment:
– Hydraulic cylinders are extensively used in industrial equipment such as manufacturing machinery, construction equipment, material handling systems, and heavy-duty machinery. They provide the necessary force and controlled movement for tasks such as lifting, pushing, pulling, and positioning heavy loads. Industrial hydraulic cylinders are typically designed for robustness, durability, and high load-bearing capacities to withstand the demanding environments and heavy-duty applications encountered in industries.
2. Mobile Equipment:
– Hydraulic cylinders are also widely adopted in mobile equipment, including agricultural machinery, mining equipment, forestry machinery, and transportation vehicles. These cylinders enable various functions such as tilting, lifting, steering, and stabilizing. Mobile hydraulic cylinders are designed to be compact, lightweight, and efficient to meet the specific requirements of mobile applications. They are often integrated into hydraulic systems that power multiple functions in a single machine.
3. Adaptability:
– One of the key advantages of hydraulic cylinders is their adaptability. They can be customized and configured to suit different operating conditions, equipment sizes, load capacities, and speed requirements. Hydraulic cylinder manufacturers offer a wide range of sizes, stroke lengths, mounting options, and rod configurations to accommodate diverse applications. This adaptability allows hydraulic cylinders to be utilized in both industrial and mobile equipment, serving various purposes across different sectors.
4. Mounting Options:
– Hydraulic cylinders can be adapted to different mounting arrangements to suit the specific requirements of industrial and mobile equipment. They can be mounted in various orientations, including vertical, horizontal, or at an angle. Different mounting options, such as flange mounts, trunnion mounts, and clevis mounts, provide flexibility in integrating hydraulic cylinders into different equipment designs.
5. Integration with Hydraulic Systems:
– Hydraulic cylinders are often part of a larger hydraulic system that includes components such as pumps, valves, hoses, and reservoirs. These systems can be tailored to meet the specific needs of both industrial and mobile equipment. The hydraulic system’s design and configuration can be adapted to provide the necessary flow rates, pressures, and control mechanisms required for optimal performance in the intended application.
6. Control and Automation:
– Hydraulic cylinders in both industrial and mobile equipment can be integrated with control systems and automation technologies. This allows for precise and automated control of the cylinder’s movement and function. Proportional control valves, sensors, and electronic controls can be incorporated to achieve accurate positioning, speed control, and synchronization of multiple hydraulic cylinders, enhancing overall equipment performance and productivity.
7. Safety Considerations:
– Hydraulic cylinders for both industrial and mobile equipment are designed with safety in mind. They often feature built-in safety mechanisms such as overload protection, pressure relief valves, and emergency stop systems to prevent accidents and equipment damage. Safety standards and regulations specific to each industry are taken into account during the design and adaptation of hydraulic cylinders for different applications.
Overall, hydraulic cylinders offer the adaptability and performance required for use in both industrial and mobile equipment. Their versatility, customizable features, mounting options, integration capabilities, and safety considerations make them suitable for a wide range of applications across diverse industries. Whether it’s heavy-duty industrial machinery or mobile equipment operating in challenging environments, hydraulic cylinders can be adapted to meet the specific needs and requirements of various equipment types.
editor by CX 2023-12-25
China Hot selling 3.2L High Pressure Aluminum Gas Cylinder vacuum pump distributors
Product Description
Aluminum Oxygen Gas Cylinder
1.Product Specification
Outside diameter | 120mm | Height | 437mm |
Water capacity | 3.2L | Weight | 3.2kg |
Working pressure | 150Bar | Design wall thickness | 6.1mm |
Test pressure | 250Bar | Material | 6061 |
Color | Usually Sliver Color or As Clients Require | ||
Head protection | Tulip cap, Common cap | ||
Packing | 1.Packed into cartons,then pakced by pallets | ||
About SEFIC | As a China gas cylinder manufacturer, SEFIC offers Oxygen Gas Cylinder, Nitrogen Gas Cylinder, Argon Gas Cylinder, CO2 Gas Cylinder, Hydrogen Gas Cylinder, Helium Gas Cylinder, Acetylene gas cylinder, CO2 Cartridge and Aluminum Cylinder … CE/TUV certified. |
2.General Introduction
1. SEFIC has been specializing in seamless aluminum cylinders designing and manufacturing for many years, and has gained a good reputation at home and abroad with the support of professional and powerful team.
2. Our gas cylinders are made from superior aluminum alloy 6061 so that they features high strength (No splashing fragment in explosion), lightweight (40% lighter than steel cylinders) and corrosion resistance etc.
3. Our gas cylinders interior and exterior are treated by passivation which can make sure the gases clean, odorless and anticorrosive.
4. SEFIC production and management are carried out by ISO9
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Material: | Aluminum |
---|---|
Structure: | General Cylinder |
Power: | Hydraulic |
Standard: | Standard |
Pressure Direction: | Double-acting Cylinder |
Outside Diameter: | 120mm |
Customization: |
Available
|
|
---|
How do hydraulic cylinders handle variations in temperature and harsh operating environments?
Hydraulic cylinders are designed to handle variations in temperature and harsh operating environments by incorporating specific features and materials that ensure their durability, reliability, and performance. The ability of hydraulic cylinders to withstand extreme temperatures, corrosive environments, and other harsh conditions is crucial for their successful operation in a wide range of applications. Here’s a detailed explanation of how hydraulic cylinders handle variations in temperature and harsh operating environments:
1. Temperature Range:
– Hydraulic cylinders are designed to operate within a specified temperature range. The materials used in their construction, such as cylinder barrels, pistons, seals, and lubricants, are selected to withstand the anticipated temperature variations. Specialized seals and O-rings made from materials like nitrile, Viton, or polyurethane are used to maintain their sealing properties over a wide temperature range. Heat-resistant coatings or thermal insulation may be applied to certain components to protect them from high temperatures.
2. Thermal Expansion:
– Hydraulic cylinders are designed to accommodate thermal expansion and contraction that occurs with temperature changes. The materials used in their construction have different coefficients of thermal expansion, allowing the cylinder components to expand or contract at a similar rate. This design consideration prevents excessive stress, binding, or leakage that could result from thermal expansion or contraction.
3. Heat Dissipation:
– In applications where hydraulic cylinders are subjected to high temperatures, heat dissipation mechanisms are employed to prevent overheating. Cooling fins or heat sinks may be incorporated into the cylinder design to increase the surface area for heat transfer. In some cases, external cooling methods such as air or liquid cooling systems can be used to maintain optimal operating temperatures.
4. Corrosion Resistance:
– Hydraulic cylinders used in harsh operating environments are constructed from materials that exhibit excellent corrosion resistance. Stainless steel, chrome-plated steel, or other corrosion-resistant alloys are commonly used for cylinder components exposed to corrosive substances or environments. Additionally, surface treatments such as coatings, plating, or specialized paints can provide an extra layer of protection against corrosion.
5. Sealing Systems:
– Hydraulic cylinders employ sealing systems that are specifically designed to withstand harsh operating environments. The seals used in hydraulic cylinders are selected based on their resistance to temperature extremes, chemicals, abrasion, and other environmental factors. Specialized seal designs, such as wiper seals, rod seals, or high-temperature seals, are utilized to maintain effective sealing and prevent contamination of the hydraulic fluid.
6. Lubrication:
– Proper lubrication is essential for the smooth operation and longevity of hydraulic cylinders, particularly in harsh operating environments. Lubricants are selected based on their ability to withstand high temperatures, resist oxidation, and provide effective lubrication under extreme conditions. Regular maintenance and lubrication practices ensure that the cylinder components continue to operate smoothly and reduce the effects of wear and friction.
7. Robust Construction:
– Hydraulic cylinders designed for harsh operating environments are built with robust construction techniques to withstand the rigors of such conditions. The cylinder barrels, rods, and other components are manufactured to meet strict quality and durability standards. Welded or bolted construction methods are employed to ensure the structural integrity of the cylinders. Reinforcements, such as flanges or tie rods, may be added to enhance the cylinder’s strength and resistance to external forces.
8. Environmental Protection:
– Hydraulic cylinders can be equipped with additional protective features to shield them from harsh operating environments. Protective covers, boots, or bellows can be used to prevent contaminants, debris, or moisture from entering the cylinder and compromising its performance. These protective measures help extend the service life of hydraulic cylinders in demanding conditions.
9. Compliance with Standards:
– Hydraulic cylinders manufactured for specific industries or applications often comply with industry standards or regulations related to operating temperature ranges, environmental conditions, or safety requirements. Compliance with these standards ensures that hydraulic cylinders are designed and tested to meet the specific demands of their intended operating environments.
In summary, hydraulic cylinders are designed to handle variations in temperature and harsh operating environments by incorporating suitable materials, thermal expansion considerations, heat dissipation mechanisms, corrosion-resistant components, specialized sealing systems, proper lubrication, robust construction techniques, protective features, and compliance with industry standards. These design considerations and features enable hydraulic cylinders to operate reliably and effectively in a wide range of demanding applications and environmental conditions.
What considerations are important when selecting hydraulic cylinders for mobile equipment?
To select hydraulic cylinders for mobile equipment, several important considerations need to be taken into account. Here are the key factors to consider:
- Load Capacity: Determine the maximum load or force that the hydraulic cylinder will need to support. This includes both the static load and any dynamic or shock loads that may be encountered during operation.
- Stroke Length: Consider the required stroke length, which is the distance the hydraulic cylinder can extend and retract. Ensure that the stroke length is sufficient for the specific application and range of motion needed.
- Operating Pressure: Determine the maximum operating pressure required for the hydraulic system. This will depend on the load and the specific application. Select a hydraulic cylinder with a pressure rating that exceeds the maximum operating pressure to ensure safety and durability.
- Mounting Style: Consider the available space and the mounting requirements of the mobile equipment. Hydraulic cylinders come in various mounting styles, such as flange, trunnion, clevis, and pivot, among others. Choose a mounting style that is compatible with the equipment and provides the necessary support and stability.
- Size and Weight: Take into account the physical dimensions and weight of the hydraulic cylinder. Ensure that it can fit within the available space and that the equipment can support its weight without compromising performance or safety.
- Speed and Precision: Evaluate the required speed and precision of the hydraulic cylinder’s movement. Different cylinder designs and configurations can affect the speed and accuracy of motion. Consider factors such as cylinder bore size, rod diameter, and the presence of cushioning or dampening features.
- Environmental Factors: Assess the operating environment of the mobile equipment. Consider factors such as temperature extremes, exposure to moisture, dust, and chemicals. Select hydraulic cylinders with appropriate seals and coatings that can withstand the environmental conditions and prevent corrosion or damage.
- Reliability and Maintenance: Consider the reliability and maintenance requirements of the hydraulic cylinders. Look for reputable manufacturers that provide high-quality products with a proven track record. Evaluate factors such as expected service life, availability of spare parts, and ease of maintenance.
- Cost: Finally, consider the cost of the hydraulic cylinders, including the initial purchase price, installation costs, and long-term maintenance expenses. While it is essential to find a cost-effective solution, prioritize quality and performance to ensure safe and efficient operation.
What is a hydraulic cylinder and how does it function in various applications?
A hydraulic cylinder is a mechanical actuator that converts hydraulic energy into linear force and motion. It plays a critical role in various applications where controlled and powerful linear motion is required. Hydraulic cylinders are commonly used in industries such as construction, manufacturing, agriculture, and transportation. Here’s a detailed explanation of what a hydraulic cylinder is and how it functions:
Definition and Components:
– A hydraulic cylinder consists of a cylindrical barrel, a piston, a piston rod, and various seals. The barrel is a hollow tube that houses the piston and allows for fluid flow. The piston divides the cylinder into two chambers: the rod side and the cap side. The piston rod extends from the piston and provides a connection point for external loads. Seals are used to prevent fluid leakage and maintain hydraulic pressure within the cylinder.
Function:
– The function of a hydraulic cylinder is to convert the pressure and flow of hydraulic fluid into linear force and motion. The hydraulic fluid, typically oil, is pressurized and directed into one of the chambers of the cylinder. As the fluid enters the chamber, it applies pressure on the piston, causing it to move in a linear direction. This linear motion of the piston is transferred to the piston rod, creating a pushing or pulling force.
Working Principle:
– The working principle of a hydraulic cylinder is based on Pascal’s law, which states that pressure exerted on a fluid in a confined space is transmitted equally in all directions. In a hydraulic cylinder, when hydraulic fluid is pumped into one side of the cylinder, it creates pressure on the piston. The pressure is transmitted through the fluid to the other side of the piston, resulting in a balanced force across the piston and piston rod. This force generates linear motion in the direction determined by the fluid input.
Applications:
– Hydraulic cylinders find extensive use in a wide range of applications due to their ability to generate high forces and precise control of linear motion. Some common applications include:
1. Construction Equipment: Hydraulic cylinders are used in excavators, loaders, bulldozers, and cranes for lifting, pushing, and digging tasks.
2. Manufacturing Machinery: Hydraulic cylinders are employed in presses, machine tools, and material handling equipment for pressing, clamping, and lifting operations.
3. Agricultural Machinery: Hydraulic cylinders are used in tractors, harvesters, and irrigation systems for tasks like steering, lifting, and controlling attachments.
4. Transportation: Hydraulic cylinders are utilized in vehicles such as dump trucks, garbage trucks, and forklifts for tilting, lifting, and tipping operations.
5. Aerospace and Defense: Hydraulic cylinders are employed in aircraft landing gear, missile systems, and hydraulic actuators for control surfaces.
6. Marine and Offshore: Hydraulic cylinders are used in ship steering systems, cranes, and offshore drilling equipment for various lifting and positioning tasks.
In these applications, hydraulic cylinders offer advantages such as high force capability, precise control, compact size, and durability. They provide efficient and reliable linear motion, contributing to enhanced productivity and functionality in a wide range of industries.
Overall, hydraulic cylinders are integral components in various applications where controlled and powerful linear motion is required. Their ability to convert hydraulic energy into mechanical force makes them invaluable in numerous industries, enabling the operation of heavy machinery, precise positioning, and efficient load handling.
editor by CX 2023-12-19
China best Large Capacity High Pressure 40L CO2 Gas Cylinder vacuum pump distributors
Product Description
Large Capacity High Pressure 40L CO2 Gas Cylinder
1.Product Description
The industrial cylinders are all made by high quality seamless steel pipe,consistent height, smoothly painting, and excellent properties, which is widely used for steel cutting, welding, electronic, medical and other fields.and are supposed to be used repeatedly for keeping argon which is mainly used for steel cutting, welding, electronic, medical and so on.
Outside diameter(mm) | 219 |
Water capacity(L) | 40 |
Height(mm) | 1315 |
Weight(kg) | 48 |
Design wall thickness(mm) | 5.7 |
Working Pressure(Mpa) | 15 |
Test pressure(Mpa) | 25 |
Material | 37Mn |
Head Protection | Tulip Cap or Common Cap |
Cylinder Color | As Clients Require |
Certification Provided | ISO9809/TPED/DOT |
2.Gas Cylinder Process
3.Company Profile
Located in ZheJiang , SEFIC is a professional supplier of gas and gas equipment. Founded in the 90s, the company has already accumulated enough experience and became 1 of the best suppliers of all kinds of gas and gas equipment. Besides, it is 1 of the earliest in the country to gain the License of Pressure Vessel Type A2 and C2, ISO9
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Material: | Steel |
---|---|
Usage: | Gas Storage |
Structure: | General Cylinder |
Power: | Hydraulic |
Standard: | Standard |
Pressure Direction: | Double-acting Cylinder |
Customization: |
Available
|
|
---|
How do hydraulic cylinders ensure smooth and consistent movement in heavy machinery?
Hydraulic cylinders play a vital role in ensuring smooth and consistent movement in heavy machinery. Their design and operation allow for precise control over the motion of heavy loads, resulting in efficient and reliable performance. Here’s a detailed explanation of how hydraulic cylinders contribute to smooth and consistent movement in heavy machinery:
1. Hydraulic Fluid and Pressure:
– Hydraulic cylinders operate by utilizing hydraulic fluid, typically oil, to transmit force and motion. The fluid is pressurized by a hydraulic pump, creating a force that acts on the piston inside the cylinder. The pressure of the hydraulic fluid can be precisely controlled, allowing for smooth and gradual movement of heavy machinery. The fluid’s incompressibility ensures that the force is evenly distributed, resulting in consistent and predictable motion.
2. Piston and Cylinder Design:
– Hydraulic cylinders are designed with precision to ensure smooth movement. The piston and cylinder bore are machined to tight tolerances, reducing friction and minimizing internal leakage. This precise fit between the piston and cylinder walls helps maintain consistent motion without jerks or sudden changes in speed. Additionally, the use of high-quality seals and lubrication further enhances the smooth operation of the cylinder.
3. Control Valves and Flow Control:
– Hydraulic systems incorporate control valves that regulate the flow of hydraulic fluid into and out of the cylinder. These valves allow for precise control over the speed and direction of the cylinder’s movement. By adjusting the flow rate, operators can achieve smooth and controlled motion of heavy machinery, avoiding sudden starts or stops. Flow control valves also enable speed adjustment, ensuring consistent movement even under varying loads or operating conditions.
4. Cushioning and Damping:
– Hydraulic cylinders can be equipped with cushioning mechanisms to absorb shock and minimize impacts during the movement of heavy machinery. Cushioning is achieved by incorporating specialized valves or adjustable orifices in the cylinder, which restrict the flow of hydraulic fluid near the end of the stroke. This gradual deceleration helps prevent sudden jolts or vibrations, maintaining smooth and consistent movement while reducing stress on the machinery and its components.
5. Load Balancing:
– Hydraulic cylinders can be designed and arranged in a system to balance the load and distribute forces evenly. By utilizing multiple cylinders in parallel or series configurations, heavy machinery can achieve balanced movement, preventing uneven stress and ensuring smooth operation. Load balancing also helps minimize the risk of component failure and enhances the overall stability and longevity of the machinery.
6. Feedback and Control Systems:
– Advanced hydraulic systems incorporate feedback sensors and control systems to monitor and adjust the movement of heavy machinery. These sensors provide real-time information about the position, speed, and force exerted by the hydraulic cylinders. The control system processes this data and adjusts the flow of hydraulic fluid accordingly to maintain smooth and consistent movement. By continuously monitoring and regulating the cylinder’s operation, feedback and control systems contribute to precise and reliable motion control.
7. Maintenance and Servicing:
– Regular maintenance and servicing of hydraulic cylinders are essential to ensure their smooth and consistent movement in heavy machinery. Proper lubrication, inspection of seals, and replacement of worn-out components help maintain optimal performance. Preventive maintenance practices, such as filter replacements and fluid analysis, also contribute to the longevity and reliability of hydraulic systems, ensuring consistent movement over time.
In summary, hydraulic cylinders ensure smooth and consistent movement in heavy machinery through the use of hydraulic fluid and pressure, precise piston and cylinder design, control valves and flow control, cushioning and damping mechanisms, load balancing, feedback and control systems, and regular maintenance and servicing. By leveraging these features, hydraulic cylinders provide the necessary force and control to handle heavy loads while maintaining precise and reliable motion, enhancing the overall performance and productivity of heavy machinery in various industrial applications.
Ensuring Controlled and Safe Force Application in Heavy Machinery with Hydraulic Cylinders
Hydraulic cylinders play a critical role in heavy machinery by ensuring controlled and safe force application. The ability to exert and control high forces is essential for heavy machinery operations, such as lifting, pressing, pushing, or pulling heavy loads. Let’s explore how hydraulic cylinders ensure controlled and safe force application in heavy machinery:
- Force Control: Hydraulic cylinders provide precise force control capabilities. The hydraulic system’s pressure can be adjusted to regulate the force exerted by the cylinder. This control allows operators to apply the necessary force for a specific task while ensuring it remains within safe limits. By accurately controlling the force, hydraulic cylinders help prevent excessive force that could damage the machinery or compromise the safety of the operation.
- Load Balancing: In heavy machinery, multiple hydraulic cylinders are often used in conjunction to distribute and balance the applied force. By using multiple cylinders, the load can be evenly distributed across the machinery, minimizing stress concentrations and ensuring controlled force application. This load balancing approach enhances the stability and safety of the machinery, preventing uneven loading that could lead to structural issues or instability.
- Safety Valves: Hydraulic systems in heavy machinery are equipped with safety valves to protect against excessive force or overloading. Safety valves are designed to release hydraulic fluid from the cylinder when the force exceeds a predetermined threshold. This prevents the force from reaching dangerous levels, safeguarding the machinery and preventing potential accidents or damage. Safety valves provide an additional layer of safety and ensure controlled force application even in unexpected circumstances.
- Pressure Relief Systems: Hydraulic cylinders incorporate pressure relief systems to further enhance safety. These systems are designed to relieve excess pressure in the hydraulic system, which could occur due to factors such as thermal expansion or system malfunctions. By relieving excess pressure, the pressure relief systems prevent sudden and uncontrolled force surges, maintaining safe and controlled force application in heavy machinery.
- Structural Integrity: Hydraulic cylinders are designed to withstand the high forces and loads associated with heavy machinery applications. The cylinders are constructed using robust materials, such as high-strength steel, and undergo rigorous testing to ensure their structural integrity. This ensures that the cylinders can safely handle the forces applied during heavy machinery operations without experiencing failures or deformations that could compromise the safety and controlled force application.
In summary, hydraulic cylinders ensure controlled and safe force application in heavy machinery through force control, load balancing, safety valves, pressure relief systems, and robust structural design. These features and design considerations enable operators to exert the necessary force while maintaining safety and preventing excessive loads or force surges. By incorporating hydraulic cylinders into heavy machinery, manufacturers can achieve controlled force application, enhance operational safety, and protect the machinery from damage or failure.
What benefits do hydraulic cylinders offer for tasks requiring heavy lifting or movement?
Hydraulic cylinders offer numerous benefits for tasks that involve heavy lifting or movement. Their unique design and characteristics make them well-suited for applications that require substantial force, precise control, and reliable operation. Here are the detailed benefits that hydraulic cylinders provide for such tasks:
1. High Force Generation:
– Hydraulic cylinders are capable of generating significant amounts of force. By utilizing hydraulic pressure, which can be easily amplified, hydraulic cylinders can exert substantial force to lift and move heavy loads. The force output of a hydraulic cylinder is directly proportional to the hydraulic pressure and the surface area of the piston. This high force capability makes hydraulic cylinders ideal for tasks that involve heavy lifting, pushing, or pulling.
2. Precise Control:
– Hydraulic cylinders offer precise control over the force and motion they generate. By regulating the flow of hydraulic fluid into the cylinder, the speed, direction, and position of the cylinder’s movement can be accurately controlled. This level of control is crucial for tasks that require precise positioning, delicate movements, or synchronization of multiple cylinders. It enables operators to perform operations with accuracy and minimize the risk of damage or accidents.
3. Safety:
– Hydraulic cylinders are designed with safety features to ensure the protection of both personnel and equipment. They incorporate overload protection mechanisms, such as relief valves, that prevent excessive force or pressure from damaging the system. Additionally, hydraulic cylinders allow for controlled and gradual movements, reducing the risk of sudden and uncontrolled motions that could pose safety hazards during heavy lifting or movement tasks.
4. Versatility and Adaptability:
– Hydraulic cylinders are versatile components that can be adapted to meet specific requirements. They can be customized based on factors such as force capacity, stroke length, speed, and mounting options, allowing them to be integrated into various types of machinery. This versatility makes hydraulic cylinders suitable for a wide range of applications, including construction, material handling, mining, agriculture, and more.
5. Smooth and Controlled Operation:
– Hydraulic cylinders provide smooth and controlled operation, ensuring efficient and reliable performance during heavy lifting or movement tasks. The hydraulic fluid acts as a cushioning medium, which helps dampen shocks and vibrations, resulting in smoother and quieter operation. This controlled operation also reduces the risk of damage to the load being lifted or the surrounding equipment.
6. Compact Design:
– Hydraulic cylinders offer a high power-to-size ratio, allowing for compact machinery design. Their relatively small size, compared to the forces they can generate, makes them suitable for applications where space is limited or weight restrictions apply. This compact design enables the integration of hydraulic cylinders into different types of equipment without compromising performance or efficiency.
7. Durability and Reliability:
– Hydraulic cylinders are built to withstand rigorous operating conditions and provide long-term reliability. They are constructed with robust materials, precise machining, and effective sealing systems to ensure durability and prevent fluid leakage. Hydraulic cylinders can withstand high pressures, heavy loads, and continuous use, making them suitable for demanding tasks involving heavy lifting or movement.
8. Energy Efficiency:
– Hydraulic cylinders contribute to energy efficiency in tasks requiring heavy lifting or movement. Hydraulic systems allow for the transfer of power over long distances without significant power losses. Additionally, hydraulic cylinders can incorporate energy-saving features such as load-sensing technology and regenerative circuits, which reduce energy consumption by optimizing the use of hydraulic fluid.
In summary, hydraulic cylinders offer several benefits for tasks that involve heavy lifting or movement. They provide high force generation, precise control, safety features, versatility, smooth operation, compact design, durability, and energy efficiency. These advantages make hydraulic cylinders indispensable components in various industries where heavy loads need to be lifted, pushed, or moved with accuracy and reliability.
editor by CX 2023-12-18
China Best Sales 47L Aluminum Medical Gas Cylinder with High Quality vacuum pump belt
Product Description
DETAIL
Material: Steel
Use: Industrial Gas
Pressure: High
Brand Name: CHINAMFG
Model Number: ISO232-47-150
Specifications
Nitrogen gas cylinder
1. Working pressure come to 150 bar.
2. Hydraulic test pressure: 250bar, water capcity come to 40Liter
So far our products are enjoying good markets at home and exporting to European and American countries, the Middle East countries, West Asia, as well as South and East Asia countries.
40L, 47l and 50L medical oxygen cylinders | |||||||
Type | (mm) Outside Diameter |
(L) Water Capacity |
(mm) () Height (Withoutvalve) |
(Kg) (,) Weight(Without valve,cap) |
(Mpa) Working Pressure |
(mm) Design Wall Thickness |
Material Grades |
ISO232-40-150 | 219 | 40 | 1167 | 43 | 200 | 5.2 | 37Mn |
ISO232-47-150 | 47 | 1351 | 49 | ||||
ISO232-50-150 | 50 | 1430 | 51.6 | ||||
ISO232-40-200 | 232 | 40 | 1156 | 44.9 | 200 | 5.2 | 34CrMo4 |
ISO232-46.7-200 | 46.7 | 1333 | 51 | ||||
ISO232-47-200 | 47 | 1341 | 51.3 | ||||
ISO232-50-200 | 50 | 1420 | 54 | ||||
EN232-40-210 | 232(TPED) | 40 | 1156 | 44.9 | 230 | 5.8 | 34CrMo4 |
EN232-46.7-210 | 46.7 | 1333 | 51 | ||||
EN232-47-210 | 47 | 1341 | 51.3 | ||||
EN232-50-210 | 50 | 1420 | 54 | ||||
EN232-40-230 | 40 | 1156 | 44.9 | 230 | 5.8 | 34CrMo4 | |
EN232-46.7-230 | 46.7 | 1333 | 51 | ||||
ISO232-47-230 | 47 | 1341 | 51.3 | ||||
ISO232-50-230 | 50 | 1420 | 54 | ||||
ISO267-40-150 | 267 | 40 | 922 | 43.3 | 150 | 5.8 | 37Mn |
ISO267-50-150 | 50 | 1119 | 51.3 |
47L OXYGEN GAS CYLINDER RECORD OF HYDROSTATIC TESTS ON CYLINDERS time ≥ 60S | ||||||||
S.N | Serial No. | The weight without valve&cap(kg) | Volumetric Capacity(L) | Total expansion(ml) | Permanent expansion(ml) | Percent of Permanent to totalexpanison(%) | Test Pressure 250Bar | Lot and Batch No. |
1 | 16Z380 001 | 56.4 | 47.3 | 149.0 | 2.3 | 1.5 | 250 | 16Z380 |
2 | 16Z380 002 | 56.7 | 47.2 | 155.1 | 2.7 | 1.7 | 250 | 16Z380 |
3 | 16Z380 003 | 57.3 | 47.2 | 156.1 | 2.4 | 1.5 | 250 | 16Z380 |
4 | 16Z380 004 | 56.8 | 47.4 | 148.9 | 2.8 | 1.9 | 250 | 16Z380 |
5 | 16Z380 005 | 57 | 47.4 | 149.9 | 2.5 | 1.7 | 250 | 16Z380 |
6 | 16Z380 006 | 56.8 | 47.4 | 149.9 | 2.3 | 1.5 | 250 | 16Z380 |
7 | 16Z380 007 | 56.9 | 47.3 | 153.0 | 2.6 | 1.7 | 250 | 16Z380 |
8 | 16Z380 008 | 57.3 | 47.2 | 155.1 | 2.3 | 1.5 | 250 | 16Z380 |
9 | 16Z380 009 | 56.7 | 47.5 | 146.8 | 2.1 | 1.4 | 250 | 16Z380 |
10 | 16Z380 571 | 56.2 | 47.6 | 147.6 | 2.3 | 1.6 | 250 | 16Z380 |
11 | 16Z380 011 | 56.3 | 47.2 | 151.2 | 2.2 | 1.5 | 250 | 16Z380 |
12 | 16Z380 012 | 56 | 47.4 | 151.8 | 2.1 | 1.4 | 250 | 16Z380 |
13 | 16Z380 013 | 56.4 | 47.3 | 150.0 | 2.1 | 1.4 | 250 | 16Z380 |
14 | 16Z380 014 | 56.2 | 47.7 | 145.5 | 2.4 | 1.6 | 250 | 16Z380 |
15 | 16Z380 015 | 57.1 | 47.5 | 153.7 | 2.5 | 1.6 | 250 | 16Z380 |
16 | 16Z380 016 | 57.2 | 47.4 | 152.8 | 2.6 | 1.7 | 250 | 16Z380 |
17 | 16Z380 017 | 55.9 | 47.4 | 151.8 | 3.1 | 2.0 | 250 | 16Z380 |
18 | 16Z380 018 | 57 | 47.3 | 154.0 | 2.8 | 1.8 | 250 | 16Z380 |
19 | 16Z380 019 | 56.4 | 47.5 | 150.7 | 2.5 | 1.7 | 250 | 16Z380 |
20 | 16Z380 571 | 57.1 | 47.1 | 156.2 | 2.9 | 1.9 | 250 | 16Z380 |
21 | 16Z380 571 | 56.9 | 47.2 | 154.1 | 2.8 | 1.8 | 250 | 16Z380 |
22 | 16Z380 571 | 56.5 | 47.3 | 154.0 | 2.5 | 1.6 | 250 | 16Z380 |
23 | 16Z380 571 | 57.3 | 47.2 | 155.1 | 2.9 | 1.9 | 250 | 16Z380 |
24 | 16Z380 571 | 57.3 | 47.2 | 154.1 | 2.6 | 1.7 | 250 | 16Z380 |
25 | 16Z380 571 | 57.2 | 47.2 | 154.1 | 2.8 | 1.8 | 250 | 16Z380 |
26 | 16Z380 026 | 57.3 | 47 | 153.4 | 2.3 | 1.5 | 250 | 16Z380 |
27 | 16Z380 571 | 55.8 | 47.4 | 152.8 | 2.6 | 1.7 | 250 | 16Z380 |
28 | 16Z380 571 | 55.6 | 47.4 | 151.8 | 2.8 | 1.8 | 250 | 16Z380 |
29 | 16Z380 571 | 56.2 | 47.3 | 150.0 | 2.4 | 1.6 | 250 | 16Z380 |
30 | 16Z380 030 | 55.8 | 47.3 | 148.0 | 2.1 | 1.4 | 250 | 16Z380 |
31 | 16Z380 031 | 55.7 | 47.3 | 148.0 | 2.1 | 1.4 | 250 | 16Z380 |
32 | 16Z380 032 | 57 | 47.2 | 149.2 | 2.3 | 1.5 | 250 | 16Z380 |
33 | 16Z380 033 | 57.4 | 47.3 | 149.0 | 2.3 | 1.5 | 250 | 16Z380 |
34 | 16Z380 034 | 56.2 | 47.4 | 151.8 | 2.6 | 1.7 | 250 | 16Z380 |
35 | 16Z380 035 | 56.7 | 47.3 | 151.0 | 2.7 | 1.8 | 250 | 16Z380 |
36 | 16Z380 036 | 56.4 | 47.1 | 155.3 | 2.3 | 1.5 | 250 | 16Z380 |
37 | 16Z380 037 | 56.8 | 47.2 | 155.1 | 2.9 | 1.9 | 250 | 16Z380 |
38 | 16Z380 038 | 56.6 | 47.1 | 151.3 | 2.3 | 1.5 | 250 | 16Z380 |
39 | 16Z380 039 | 55.8 | 47.3 | 154.0 | 2.8 | 1.8 | 250 | 16Z380 |
40 | 16Z380 040 | 56.9 | 47.3 | 151.0 | 2.9 | 1.9 | 250 | 16Z380 |
41 | 16Z380 041 | 56.1 | 47.4 | 149.9 | 2.3 | 1.5 | 250 | 16Z380 |
42 | 16Z380 042 | 56.5 | 47.1 | 152.3 | 2.3 | 1.5 | 250 | 16Z380 |
43 | 16Z380 043 | 56.6 | 47.2 | 148.2 | 2.2 | 1.5 | 250 | 16Z380 |
44 | 16Z380 044 | 55.9 | 47.3 | 148.0 | 2.3 | 1.6 | 250 | 16Z380 |
45 | 16Z380 045 | 56.2 | 47.4 | 151.8 | 2.9 | 1.9 | 250 | 16Z380 |
46 | 16Z380 046 | 57.1 | 47.1 | 152.3 | 2.8 | 1.8 | 250 | 16Z380 |
47 | 16Z380 047 | 57.1 | 47.2 | 150.2 | 2.4 | 1.6 | 250 | 16Z380 |
48 | 16Z380 048 | 56.2 | 47.4 | 152.8 | 2.9 | 1.9 | 250 | 16Z380 |
49 | 16Z380 049 | 57 | 47.3 | 150.0 | 3 | 2.0 | 250 | 16Z380 |
50 | 16Z380 050 | 56.2 | 47.2 | 152.1 | 2.7 | 1.8 | 250 | 16Z380 |
Established in 1998. Our company possesses 3 production lines for production of various seamless gas cylinders. The annual production and sale for gas cylinders of below 20L for 600 thousand pieces, accounting for 90% domestic share in small size gas cylinder market. The recently set up new production line for 0.4L-80L emergency respirator, colliery escape capsule and refuge chamber has the annual production of 700 thousand pieces of cylinders. By the year 2013, the total specifications we do ascent to 109 types to meet different customers’ requirement.
Our major products are oxygen cylinder, nitrogen gas cylinder, carbon dioxide gas cylinder, argon gas cylinder, other industrial gas cylinder, medical oxygen gas cylindersupply unit, etc., with wide application for fields of medical apparatus and instruments, engineering machinery, colliery rescue, gas industry, welding-cutting machinery, and chemical industry. Our cryogenic vessels production line mainly produce cryogenic liquid storage tanks, welding insulation cylinders, cryogenic reaction device, cryogenic tanks, cryogenic ISO tank container and air temperature vaporizer. /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Material: | Aluminum |
---|---|
Structure: | Gas – Liquid Damping Cylinder |
Power: | Hydraulic |
Standard: | Standard |
Pressure Direction: | Single-acting Cylinder |
Double-Acting Cylinder Type: | Common Cylinder |
Customization: |
Available
|
|
---|
Can hydraulic cylinders be used for precise operations like CNC machining or molding?
Yes, hydraulic cylinders can be used for precise operations like CNC machining or molding. While hydraulic systems are commonly associated with heavy-duty applications, they can also provide the necessary precision and control required for precise operations in CNC machining and molding processes. Here’s a detailed explanation of how hydraulic cylinders can be utilized for such precise operations:
1. Force and Control:
– Hydraulic cylinders are capable of generating substantial force, which is essential for precise operations in CNC machining and molding. By using hydraulic pressure, the cylinders can deliver the required force to cut or shape materials accurately or exert pressure for molding operations. The hydraulic system allows precise control over the force applied, ensuring consistent and reliable performance.
2. Adjustable Speed and Positioning:
– Hydraulic cylinders offer adjustable speed and precise positioning capabilities, making them suitable for precise operations. By controlling the flow of hydraulic fluid, the speed of the cylinder’s movement can be adjusted according to specific requirements. This adaptability allows for fine-tuning the machining or molding process, achieving the desired precision in material removal or shaping. Hydraulic systems also enable accurate positioning of tools or molds, ensuring precise operations.
3. Integrated Feedback Systems:
– Advanced hydraulic systems can incorporate feedback sensors and control mechanisms to enhance precision in CNC machining and molding. These sensors provide real-time information about the position, speed, and force exerted by the hydraulic cylinders. The control system processes this data and adjusts the flow of hydraulic fluid accordingly, allowing for precise and accurate control over the operations. The feedback systems help maintain consistent performance and compensate for any deviations, ensuring high precision.
4. Damping and Vibration Control:
– Hydraulic cylinders can be equipped with damping mechanisms to minimize vibrations and ensure stability during CNC machining or molding operations. Vibrations can negatively impact precision by causing tool chatter or material deformation. By incorporating cushioning or damping features, hydraulic cylinders help absorb shocks and suppress vibrations, resulting in smoother and more accurate operations.
5. Customization and Adaptability:
– Hydraulic cylinders can be customized and adapted to meet the specific requirements of CNC machining or molding processes. Engineers can design cylinders with unique dimensions, stroke lengths, mounting options, and sealing arrangements to fit into equipment or systems with precise specifications. Customized hydraulic cylinders ensure optimal performance and compatibility for precise operations, enabling seamless integration into CNC machines or molding equipment.
6. Energy Efficiency:
– Hydraulic systems can be designed to be energy-efficient, contributing to cost savings in CNC machining or molding operations. By utilizing variable speed pumps, efficient control valves, and well-designed hydraulic circuits, energy consumption can be optimized. This efficiency reduces heat generation, leading to improved stability and precision in operations while minimizing energy costs.
7. Maintenance and Calibration:
– Regular maintenance and calibration of hydraulic systems are essential to maintain their precision in CNC machining or molding applications. Proper lubrication, inspection of seals, and replacement of worn-out components help ensure optimal performance. Regular calibration of control systems and feedback sensors ensures accurate readings and reliable operation, contributing to precision in machining or molding processes.
In summary, hydraulic cylinders can be effectively used for precise operations like CNC machining or molding. Their ability to generate substantial force, adjustable speed and positioning, integration with feedback systems, damping and vibration control, customization and adaptability, energy efficiency, and proper maintenance contribute to achieving the required precision in these operations. By leveraging the strengths of hydraulic systems, manufacturers can enhance the accuracy and reliability of CNC machining or molding processes, resulting in high-quality products and improved productivity.
Contribution of Hydraulic Cylinders to the Precision of Robotic and Automation Systems
Hydraulic cylinders play a significant role in enhancing the precision of robotic and automation systems. These systems rely on precise and controlled movements to perform various tasks with accuracy and repeatability. Let’s explore how hydraulic cylinders contribute to the precision of robotic and automation systems:
- Precise Positioning: Hydraulic cylinders enable precise positioning of robotic arms or automation components. They provide accurate control over the linear motion required for tasks such as picking, placing, and assembly. By precisely controlling the extension and retraction of the hydraulic cylinder, the system can achieve the desired position with high accuracy, ensuring precise alignment and consistent results.
- Controlled Motion: Hydraulic cylinders offer controlled and smooth motion, which is crucial for precise operation in robotic and automation systems. The flow of hydraulic fluid can be precisely regulated to control the speed and acceleration of the cylinder’s movement. This precise control allows for gentle and controlled movements, minimizing vibrations, overshooting, or jerky motions that could affect the accuracy of the system.
- Force Control: Hydraulic cylinders provide force control capabilities that contribute to precision in robotic and automation systems. By adjusting the hydraulic pressure, the force exerted by the cylinder can be precisely controlled. This is particularly valuable in applications that require delicate force-sensitive tasks, such as gripping fragile objects or performing precise force feedback during assembly or testing processes.
- Load Handling: Hydraulic cylinders are capable of handling heavy loads, allowing robotic and automation systems to manipulate and transport objects with precision. The high force capabilities of hydraulic cylinders ensure secure and stable handling of loads, minimizing the risk of slippage or imprecise positioning. This is crucial in applications where precise control over heavy objects is required, such as material handling or industrial assembly processes.
- Durability and Reliability: Hydraulic cylinders are known for their durability and reliability in demanding industrial environments. The ability to withstand repeated use, high loads, and harsh conditions ensures consistent performance over time. This reliability contributes to the precision of robotic and automation systems, as any deviation or failure in the cylinder’s movement could lead to inaccuracies or disruptions in the system’s operation.
In summary, hydraulic cylinders make significant contributions to the precision of robotic and automation systems by enabling precise positioning, controlled motion, force control, load handling, and offering durability and reliability. These capabilities ensure accurate and repeatable movements, minimize errors, and enhance the overall precision of the system. By incorporating hydraulic cylinders into robotic and automation systems, manufacturers can achieve higher levels of precision, efficiency, and productivity in various industrial applications.
How do hydraulic cylinders contribute to the efficiency of heavy machinery like excavators?
Hydraulic cylinders play a crucial role in enhancing the efficiency and performance of heavy machinery, such as excavators. These powerful hydraulic actuators enable excavators to perform various tasks efficiently and effectively. Here’s a detailed explanation of how hydraulic cylinders contribute to the efficiency of heavy machinery like excavators:
1. Force and Power:
– Hydraulic cylinders provide the necessary force and power required for the excavation process. They convert hydraulic energy from the hydraulic fluid into linear mechanical force, allowing the excavator to exert significant pushing and pulling forces. The force generated by hydraulic cylinders enables the digging arm or boom of the excavator to penetrate and break through tough materials, such as soil, rocks, or concrete, with ease and efficiency.
2. Precise Control:
– Hydraulic cylinders offer precise control over the movement of excavator components. By regulating the flow of hydraulic fluid to the cylinders, operators can control the speed, direction, and positioning of the excavator’s arm, boom, bucket, and other attachments. This precise control allows operators to perform delicate operations, such as fine grading or precise material placement, with accuracy and efficiency.
3. Versatility and Adaptability:
– Hydraulic cylinders enable excavators to perform a wide range of tasks by facilitating the quick and easy interchangeability of attachments. Excavators can be equipped with various specialized attachments, including buckets, breakers, grapples, and augers, which can be efficiently connected and disconnected using hydraulic cylinders. This versatility and adaptability enhance the efficiency of excavators by enabling them to tackle different tasks without the need for extensive manual adjustments or downtime.
4. Increased Productivity:
– The power and control provided by hydraulic cylinders significantly increase the productivity of excavators. Excavators equipped with hydraulic cylinders can complete tasks more quickly and efficiently compared to manual or mechanically-driven machinery. The precise control over movements allows for faster cycle times, reduced idle time, and improved overall productivity on the worksite.
5. Enhanced Digging and Lifting Capabilities:
– Hydraulic cylinders enable excavators to perform digging and lifting operations with enhanced capabilities. The force generated by hydraulic cylinders allows excavators to dig deeper and lift heavier loads compared to other types of machinery. This increased digging and lifting capacity contributes to the efficiency of excavators by reducing the number of passes required to complete a task and improving overall productivity.
6. Durability and Reliability:
– Hydraulic cylinders are designed to withstand heavy loads, challenging operating conditions, and frequent use. They are built with robust materials, such as high-strength steel, and undergo stringent quality control measures during manufacturing. The durability and reliability of hydraulic cylinders ensure that excavators can operate efficiently even in demanding environments, minimizing downtime and maximizing productivity.
7. Energy Efficiency:
– Hydraulic systems, including hydraulic cylinders, are known for their energy efficiency. Hydraulic cylinders can deliver high force outputs while consuming relatively low amounts of hydraulic fluid. This energy efficiency translates to lower fuel consumption and reduced operating costs for excavators. The efficient use of hydraulic power contributes to the overall efficiency and sustainability of heavy machinery operations.
8. Safety:
– Hydraulic cylinders play a vital role in ensuring the safety of excavator operations. They provide controlled and predictable movements, reducing the risk of sudden or uncontrolled motions. The precise control offered by hydraulic cylinders allows operators to perform tasks safely and accurately, minimizing the chances of accidents or damage to the machinery or surrounding environment.
Overall, hydraulic cylinders are essential components that significantly contribute to the efficiency of heavy machinery like excavators. By providing force, precise control, versatility, increased productivity, enhanced capabilities, durability, energy efficiency, and safety, hydraulic cylinders enable excavators to perform a wide range of tasks efficiently and effectively in various industries, including construction, mining, and landscaping.
editor by CX 2023-12-18
China high quality Best Selling Portable Seamless Steel Cylinder for Oxygen Gas vacuum pump design
Product Description
1.Product Description
The industrial cylinders are all made by high quality seamless steel pipe,consistent height, smoothly painting, and excellent properties, which is widely used for steel cutting, welding, electronic, medical and other fields.and are supposed to be used repeatedly for keeping argon which is mainly used for steel cutting, welding, electronic, medical and so on.
Outside diameter(mm) | 232 |
Water capacity(L) | 40 |
Height(mm) | 1190 |
Weight(kg) | 46 |
Design wall thickness(mm) | 5.4 |
Working Pressure(Mpa) | 15 |
Test pressure(Mpa) | 25 |
Material | 37Mn |
Head Protection | Tulip Cap or Common Cap |
Cylinder Color | As Clients Require |
Certification Provided | ISO9809/TPED/DOT |
2.Gas Cylinder Process
3.Company Profile
Located in ZheJiang , SEFIC is a professional supplier of gas and gas equipment. Founded in the 90s, the company has already accumulated enough experience and became 1 of the best suppliers of all kinds of gas and gas equipment. Besides, it is 1 of the earliest in the country to gain the License of Pressure Vessel Type A2 and C2, ISO9
Material: | Steel |
---|---|
Usage: | Gas Storage |
Structure: | General Cylinder |
Power: | Hydraulic |
Standard: | Standard |
Pressure Direction: | Double-acting Cylinder |
Customization: |
Available
|
|
---|
Can hydraulic cylinders be integrated with advanced control systems and automation?
Yes, hydraulic cylinders can be integrated with advanced control systems and automation technologies to enhance their functionality, precision, and overall performance. The integration of hydraulic cylinders with advanced control systems allows for more sophisticated and precise control over their operation, enabling automation and intelligent control. Here’s a detailed explanation of how hydraulic cylinders can be integrated with advanced control systems and automation:
1. Electronic Control:
– Hydraulic cylinders can be equipped with electronic sensors and transducers to provide real-time feedback on their position, force, pressure, or velocity. These sensors can be integrated with advanced control systems, such as programmable logic controllers (PLCs) or distributed control systems (DCS), to monitor and control the operation of hydraulic cylinders. By integrating electronic control, the position, speed, and force of hydraulic cylinders can be precisely monitored and adjusted, allowing for more accurate and automated control.
2. Closed-Loop Control:
– Closed-loop control systems use feedback from sensors to continuously monitor and adjust the operation of hydraulic cylinders. By integrating hydraulic cylinders with closed-loop control systems, precise control over position, velocity, and force can be achieved. Closed-loop control enables the system to automatically compensate for variations, external disturbances, or changes in operating conditions, ensuring accurate and consistent performance. This integration is particularly beneficial in applications that require precise positioning, synchronization, or force control.
3. Proportional and Servo Control:
– Hydraulic cylinders can be integrated with proportional and servo control systems to achieve finer control over their operation. Proportional control systems use proportional valves to regulate the flow and pressure of hydraulic fluid, allowing for precise adjustment of cylinder speed and force. Servo control systems, on the other hand, combine feedback sensors, high-performance valves, and advanced control algorithms to achieve extremely precise control over hydraulic cylinders. Proportional and servo control integration enhances the responsiveness, accuracy, and dynamic performance of hydraulic cylinders.
4. Human-Machine Interface (HMI):
– Hydraulic cylinders integrated with advanced control systems can be operated and monitored through human-machine interface (HMI) devices. HMIs provide a graphical user interface that allows operators to interact with the control system, monitor cylinder performance, and adjust parameters. HMIs enable operators to set desired positions, forces, or velocities, and visualize the real-time feedback from sensors. This integration simplifies the operation and monitoring of hydraulic cylinders, making them more user-friendly and facilitating seamless integration into automated systems.
5. Communication and Networking:
– Hydraulic cylinders can be integrated into communication and networking systems, enabling them to be part of a larger automated system. Integration with industrial communication protocols, such as Ethernet/IP, Profibus, or Modbus, allows for seamless information exchange between the hydraulic cylinders and other system components. This integration enables centralized control, data logging, remote monitoring, and coordination with other automated processes. Communication and networking integration enhance the overall efficiency, coordination, and integration of hydraulic cylinders within complex automation systems.
6. Automation and Sequential Control:
– By integrating hydraulic cylinders with advanced control systems, they can be seamlessly incorporated into automated processes and sequential control operations. The control system can execute predefined sequences or programmed logic to control the operation of hydraulic cylinders based on specific conditions, inputs, or timing. This integration enables the automation of complex tasks, such as material handling, assembly operations, or repetitive motions. Hydraulic cylinders can be synchronized with other actuators, sensors, or devices, allowing for coordinated and automated operation in various industrial applications.
7. Predictive Maintenance and Condition Monitoring:
– Advanced control systems can also enable predictive maintenance and condition monitoring for hydraulic cylinders. By integrating sensors and monitoring capabilities, the control system can continuously monitor the performance, health, and condition of hydraulic cylinders. This integration allows for the detection of abnormalities, wear, or potential failures in real-time. Predictive maintenance strategies can be implemented based on the collected data, optimizing maintenance schedules, reducing downtime, and enhancing the overall reliability of hydraulic systems.
In summary, hydraulic cylinders can be integrated with advanced control systems and automation technologies to enhance their functionality, precision, and performance. The integration allows for electronic control, closed-loop control, proportional and servo control, human-machine interface (HMI) interaction, communication and networking, automation and sequential control, as well as predictive maintenance and condition monitoring. These integrations enable more precise control, automation, improved efficiency, and optimized performance of hydraulic cylinders in various industrial applications.
Impact of Hydraulic Cylinders on Overall Productivity of Manufacturing Operations
Hydraulic cylinders play a crucial role in enhancing the overall productivity of manufacturing operations. These versatile devices are widely used in various industrial applications due to their ability to generate powerful and controlled linear motion. Let’s explore how hydraulic cylinders impact the overall productivity of manufacturing operations:
- Powerful Force Generation: Hydraulic cylinders are capable of generating high forces, which enables them to handle heavy loads and perform demanding tasks. By providing the necessary force, hydraulic cylinders facilitate efficient and effective operation of machinery and equipment in manufacturing processes. This ability to exert substantial force contributes to increased productivity by enabling the handling of larger workpieces, enhancing process efficiency, and reducing manual labor requirements.
- Precision and Control: Hydraulic cylinders offer precise control over the movement of loads, allowing for accurate positioning, alignment, and repetitive tasks. The smooth and controlled linear motion provided by hydraulic cylinders ensures precise operation in manufacturing processes, such as assembly, material handling, and machining. This precision and control minimize errors, rework, and scrap, leading to improved productivity and higher-quality output.
- Speed and Efficiency: Hydraulic cylinders can operate at high speeds, enabling rapid movement and cycle times in manufacturing operations. The combination of high force and speed allows for faster operation of machinery and equipment, reducing production cycle times and increasing overall throughput. By optimizing the speed and efficiency of manufacturing processes, hydraulic cylinders contribute to improved productivity and output.
- Flexibility and Adaptability: Hydraulic cylinders are highly flexible and adaptable to different manufacturing applications. They can be customized to meet specific requirements, such as load capacity, stroke length, and mounting options. This versatility allows hydraulic cylinders to be integrated into a wide range of machinery and equipment, accommodating diverse manufacturing needs. The ability to adapt to different tasks and environments enhances overall productivity by enabling efficient utilization of resources and facilitating process optimization.
- Reliability and Durability: Hydraulic cylinders are known for their robustness and durability, making them suitable for demanding manufacturing environments. Their ability to withstand heavy loads, repeated use, and harsh operating conditions ensures reliable performance over extended periods. Minimizing downtime due to cylinder failure or maintenance requirements contributes to increased productivity and uninterrupted manufacturing operations.
In summary, hydraulic cylinders have a significant impact on the overall productivity of manufacturing operations. Their powerful force generation, precision and control, speed and efficiency, flexibility and adaptability, as well as reliability and durability, contribute to optimized processes, increased throughput, improved quality, and reduced labor requirements. By leveraging the capabilities of hydraulic cylinders, manufacturers can enhance productivity, streamline operations, and achieve greater efficiency in their manufacturing processes.
What factors should be considered when selecting the right hydraulic cylinder for an application?
When selecting the right hydraulic cylinder for an application, several important factors need to be considered. These factors help ensure that the chosen hydraulic cylinder is suitable for the specific requirements of the application and will perform reliably. Here are the key factors to consider:
1. Load Requirements:
– One of the crucial factors to consider is the load requirement of the application. Determine the maximum load that the hydraulic cylinder needs to handle. Consider both the static load (when the cylinder is stationary) and the dynamic load (when the cylinder is in motion). The load requirement will impact the cylinder’s bore size, rod diameter, and overall strength. Choose a hydraulic cylinder with a load capacity that exceeds the application’s maximum load to ensure safety and longevity.
2. Stroke Length:
– The stroke length refers to the distance the hydraulic cylinder needs to extend and retract to perform the desired motion. Measure the required stroke length based on the application’s operational requirements. It is essential to choose a hydraulic cylinder with a stroke length that matches or exceeds the required distance. Consider any potential variations or adjustments in the stroke length that may be needed in the future.
3. Operating Pressure:
– Consider the operating pressure required for the application. The hydraulic cylinder must be capable of withstanding the maximum pressure within the hydraulic system. Ensure that the selected cylinder has a pressure rating that exceeds the application’s maximum operating pressure. This ensures safety and prevents premature failure.
4. Speed Requirements:
– Determine the required speed of the hydraulic cylinder’s movement for the application. Consider both the extension and retraction speeds. Select a cylinder that can achieve the desired speed while maintaining precise control and stability. It is important to choose a cylinder that can handle the required speed without compromising performance or safety.
5. Mounting:
– Evaluate the available space and mounting requirements for the hydraulic cylinder. Consider the mounting type (such as flange, foot, trunnion, or clevis), the available mounting points, and any specific mounting constraints. Ensure that the selected cylinder can be easily and securely mounted in the desired location.
6. Environmental Factors:
– Assess the environmental conditions in which the hydraulic cylinder will operate. Consider factors such as temperature extremes, humidity, exposure to chemicals, dust, or corrosive substances. Choose a cylinder that is designed to withstand the specific environmental conditions of the application. This may involve selecting appropriate materials, coatings, or seals to ensure the longevity and performance of the cylinder.
7. Cylinder Configuration:
– Determine the appropriate cylinder configuration based on the application’s requirements. Consider factors such as single-acting or double-acting cylinders, telescopic cylinders for limited space, or custom configurations for unique applications. Evaluate the specific needs of the application to select the most suitable cylinder configuration.
8. Maintenance and Serviceability:
– Consider the maintenance and service requirements of the hydraulic cylinder. Evaluate factors such as ease of access for maintenance, availability of spare parts, and the reputation of the manufacturer or supplier in terms of customer support and after-sales service. Choosing a reliable and reputable brand can ensure ongoing support and availability of spare parts when needed.
9. Compliance and Standards:
– Depending on the industry and application, certain compliance standards may need to be met. Consider any industry-specific regulations, safety standards, or certifications that the hydraulic cylinder should comply with. Ensure that the selected cylinder meets the required standards and certifications for the application.
10. Cost and Budget:
– Finally, consider the cost and budget for the hydraulic cylinder. While it is important to select a cylinder that meets the application’s requirements, it is also necessary to consider the overall cost-effectiveness. Evaluate the initial purchase cost, long-term maintenance costs, and the expected lifespan of the cylinder. Balancing the cost and quality will help in selecting a hydraulic cylinder that provides the best value for the application.
By considering these factors in the selection process, it becomes possible to choose the right hydraulic cylinder that meets the specific requirements of the application in terms of load capacity, stroke length, operating pressure, speed, mounting, environmental conditions, maintenance needs, compliance, and cost-effectiveness. Proper selection ensures optimal performance, reliability, and longevity of the hydraulic cylinder in the intended application.
editor by CX 2023-12-07
China Good quality Professional Manufacturer Supplier Compressed Gas Tank Sizes High Pressure Cylinder vacuum pump distributors
Product Description
The Seamless Steel Gas Cylinder are all made by high quality seamless steel pipe,consistent height, smoothly painting, and excellent properties, which is widely used for steel cutting, welding, electronic, medical and other fields.and are supposed to be used repeatedly for keeping argon which is mainly used for steel cutting, welding, electronic, medical and so on.
Type | SEFIC gas cylinder | Outside diameter | 219mm | ||||||||||||
Water capacity | 47L | Height | 1525mm | ||||||||||||
Working pressure | 2
Can hydraulic cylinders be integrated with modern telematics and remote monitoring?Yes, hydraulic cylinders can indeed be integrated with modern telematics and remote monitoring systems. The integration of hydraulic cylinders with telematics and remote monitoring technology offers numerous benefits, including enhanced operational efficiency, improved maintenance practices, and increased overall productivity. Here’s a detailed explanation of how hydraulic cylinders can be integrated with modern telematics and remote monitoring: 1. Sensor Integration: – Hydraulic cylinders can be equipped with various sensors to gather real-time data about their performance and operating conditions. Sensors such as pressure transducers, temperature sensors, position sensors, and load sensors can be integrated directly into the cylinder or its associated components. These sensors provide valuable information about parameters such as pressure, temperature, position, and load, enabling remote monitoring and analysis of the cylinder’s behavior. 2. Data Transmission: – The data collected from the sensors in hydraulic cylinders can be transmitted wirelessly or through wired connections to a central monitoring system. Wireless communication technologies such as Bluetooth, Wi-Fi, or cellular networks can be employed to transmit data in real-time. Alternatively, wired connections such as Ethernet or CAN bus can be utilized for data transmission. The choice of communication method depends on the specific requirements of the application and the available infrastructure. 3. Remote Monitoring Systems: – Remote monitoring systems receive and process the data transmitted from hydraulic cylinders. These systems can be cloud-based or hosted on local servers, depending on the implementation. Remote monitoring systems collect and analyze the data to provide insights into the cylinder’s performance, health, and usage patterns. Operators and maintenance personnel can access the monitoring system through web-based interfaces or dedicated software applications to view real-time data, receive alerts, and generate reports. 4. Condition Monitoring and Predictive Maintenance: – Integration with telematics and remote monitoring enables condition monitoring and predictive maintenance of hydraulic cylinders. By analyzing the collected data, patterns and trends can be identified, allowing for the detection of potential issues or anomalies before they escalate into major problems. Predictive maintenance algorithms can be applied to the data to generate maintenance schedules, recommend component replacements, and optimize maintenance activities. This proactive approach helps prevent unexpected downtime, reduces maintenance costs, and maximizes the lifespan of hydraulic cylinders. 5. Performance Optimization: – The data collected from hydraulic cylinders can also be utilized to optimize their performance. By analyzing parameters such as pressure, temperature, and load, operators can identify opportunities for improving operational efficiency. Insights gained from the remote monitoring system can guide adjustments in system settings, load management, or operational practices to optimize the performance of hydraulic cylinders and the overall hydraulic system. This optimization can result in energy savings, improved productivity, and reduced wear and tear. 6. Integration with Equipment Management Systems: – Telematics and remote monitoring systems can be integrated with broader equipment management systems. This integration allows hydraulic cylinder data to be correlated with data from other components or related machinery, providing a comprehensive view of the overall system’s performance. This holistic approach enables operators to identify potential interdependencies, optimize system-wide performance, and make informed decisions regarding maintenance, repairs, or upgrades. 7. Enhanced Safety and Fault Diagnosis: – Telematics and remote monitoring can contribute to enhanced safety and fault diagnosis in hydraulic systems. Real-time data from hydraulic cylinders can be used to detect abnormal conditions, such as excessive pressure or temperature, which may indicate potential safety risks. Fault diagnosis algorithms can analyze the data to identify specific issues or malfunctions, enabling prompt intervention and reducing the risk of catastrophic failures or accidents. In summary, hydraulic cylinders can be effectively integrated with modern telematics and remote monitoring systems. This integration enables the collection of real-time data, remote monitoring of performance, condition monitoring, predictive maintenance, performance optimization, integration with equipment management systems, and enhanced safety. By harnessing the power of telematics and remote monitoring, hydraulic cylinder users can achieve improved efficiency, reduced downtime, optimized maintenance practices, and enhanced overall productivity in various applications and industries. Ensuring Stable Performance of Hydraulic Cylinders Under Fluctuating LoadsHydraulic cylinders are designed to provide stable performance even under fluctuating loads. They achieve this through various mechanisms and features that allow for efficient load control and compensation. Let’s explore how hydraulic cylinders ensure stable performance under fluctuating loads:
In summary, hydraulic cylinders ensure stable performance under fluctuating loads through features such as piston design, cushioning mechanisms, pressure compensation, flow control, feedback systems, and proper sizing and selection. These mechanisms and considerations allow hydraulic cylinders to provide consistent and controlled movement, even in dynamic load conditions, resulting in reliable and stable performance. How do hydraulic cylinders generate force and motion using hydraulic fluid?Hydraulic cylinders generate force and motion by utilizing the principles of fluid mechanics, specifically Pascal’s law, in conjunction with the properties of hydraulic fluid. The process involves the conversion of hydraulic energy into mechanical force and linear motion. Here’s a detailed explanation of how hydraulic cylinders achieve this: 1. Pascal’s Law: – Hydraulic cylinders operate based on Pascal’s law, which states that when pressure is applied to a fluid in a confined space, it is transmitted equally in all directions. In the context of hydraulic cylinders, this means that when hydraulic fluid is pressurized, the force is evenly distributed throughout the fluid and transmitted to all surfaces in contact with the fluid. 2. Hydraulic Fluid and Pressure: – Hydraulic systems use a specialized fluid, typically hydraulic oil, as the working medium. This fluid is stored in a reservoir and circulated through the system by a hydraulic pump. The pump pressurizes the fluid, creating hydraulic pressure that can be controlled and directed to various components, including hydraulic cylinders. 3. Cylinder Design and Components: – Hydraulic cylinders consist of several key components, including a cylindrical barrel, a piston, a piston rod, and various seals. The barrel is a hollow tube that houses the piston and allows for fluid flow. The piston divides the cylinder into two chambers: the rod side and the cap side. The piston rod extends from the piston and provides a connection point for external loads. Seals are used to prevent fluid leakage and maintain hydraulic pressure within the cylinder. 4. Fluid Input and Motion: – To generate force and motion, hydraulic fluid is directed into one side of the cylinder, creating pressure on the corresponding surface of the piston. This pressure is transmitted through the fluid to the other side of the piston. 5. Force Generation: – The force generated by a hydraulic cylinder is a result of the pressure applied to a specific surface area of the piston. The force exerted by the hydraulic cylinder can be calculated using the formula: Force = Pressure × Area. The area is determined by the diameter of the piston or the piston rod, depending on which side of the cylinder the fluid is acting upon. 6. Linear Motion: – As the pressurized hydraulic fluid acts on the piston, it generates a force that moves the piston in a linear direction within the cylinder. This linear motion is transferred to the piston rod, which extends or retracts accordingly. The piston rod can be connected to external components or machinery, allowing the generated force to perform various tasks, such as lifting, pushing, pulling, or controlling mechanisms. 7. Control and Regulation: – The force and motion generated by hydraulic cylinders can be controlled and regulated by adjusting the flow of hydraulic fluid into the cylinder. By regulating the flow rate, pressure, and direction of the fluid, the speed, force, and direction of the cylinder’s movement can be precisely controlled. This control allows for accurate positioning, smooth operation, and synchronization of multiple cylinders in complex machinery. 8. Return and Recirculation of Fluid: – After the hydraulic cylinder completes its stroke, the hydraulic fluid on the opposite side of the piston needs to be returned to the reservoir. This is typically achieved through hydraulic valves that control the flow direction, allowing the fluid to return and be recirculated in the system for further use. In summary, hydraulic cylinders generate force and motion by utilizing the principles of Pascal’s law. Pressurized hydraulic fluid acts on the piston, creating force that moves the piston in a linear direction. This linear motion is transferred to the piston rod, allowing the generated force to perform various tasks. By controlling the flow of hydraulic fluid, the force and motion of hydraulic cylinders can be precisely regulated, contributing to their versatility and wide range of applications in machinery.
|