Product Description
DETAIL
Material: Steel
Use: Industrial Gas
Pressure: High
Brand Name: CHINAMFG
Model Number: ISO232-47-150
Specifications
Nitrogen gas cylinder
1. Working pressure come to 150 bar.
2. Hydraulic test pressure: 250bar, water capcity come to 40Liter
So far our products are enjoying good markets at home and exporting to European and American countries, the Middle East countries, West Asia, as well as South and East Asia countries.
40L, 47l and 50L medical oxygen cylinders | |||||||
Type | (mm) Outside Diameter |
(L) Water Capacity |
(mm) () Height (Withoutvalve) |
(Kg) (,) Weight(Without valve,cap) |
(Mpa) Working Pressure |
(mm) Design Wall Thickness |
Material Grades |
ISO232-40-150 | 219 | 40 | 1167 | 43 | 200 | 5.2 | 37Mn |
ISO232-47-150 | 47 | 1351 | 49 | ||||
ISO232-50-150 | 50 | 1430 | 51.6 | ||||
ISO232-40-200 | 232 | 40 | 1156 | 44.9 | 200 | 5.2 | 34CrMo4 |
ISO232-46.7-200 | 46.7 | 1333 | 51 | ||||
ISO232-47-200 | 47 | 1341 | 51.3 | ||||
ISO232-50-200 | 50 | 1420 | 54 | ||||
EN232-40-210 | 232(TPED) | 40 | 1156 | 44.9 | 230 | 5.8 | 34CrMo4 |
EN232-46.7-210 | 46.7 | 1333 | 51 | ||||
EN232-47-210 | 47 | 1341 | 51.3 | ||||
EN232-50-210 | 50 | 1420 | 54 | ||||
EN232-40-230 | 40 | 1156 | 44.9 | 230 | 5.8 | 34CrMo4 | |
EN232-46.7-230 | 46.7 | 1333 | 51 | ||||
ISO232-47-230 | 47 | 1341 | 51.3 | ||||
ISO232-50-230 | 50 | 1420 | 54 | ||||
ISO267-40-150 | 267 | 40 | 922 | 43.3 | 150 | 5.8 | 37Mn |
ISO267-50-150 | 50 | 1119 | 51.3 |
47L OXYGEN GAS CYLINDER RECORD OF HYDROSTATIC TESTS ON CYLINDERS time ≥ 60S | ||||||||
S.N | Serial No. | The weight without valve&cap(kg) | Volumetric Capacity(L) | Total expansion(ml) | Permanent expansion(ml) | Percent of Permanent to totalexpanison(%) | Test Pressure 250Bar | Lot and Batch No. |
1 | 16Z380 001 | 56.4 | 47.3 | 149.0 | 2.3 | 1.5 | 250 | 16Z380 |
2 | 16Z380 002 | 56.7 | 47.2 | 155.1 | 2.7 | 1.7 | 250 | 16Z380 |
3 | 16Z380 003 | 57.3 | 47.2 | 156.1 | 2.4 | 1.5 | 250 | 16Z380 |
4 | 16Z380 004 | 56.8 | 47.4 | 148.9 | 2.8 | 1.9 | 250 | 16Z380 |
5 | 16Z380 005 | 57 | 47.4 | 149.9 | 2.5 | 1.7 | 250 | 16Z380 |
6 | 16Z380 006 | 56.8 | 47.4 | 149.9 | 2.3 | 1.5 | 250 | 16Z380 |
7 | 16Z380 007 | 56.9 | 47.3 | 153.0 | 2.6 | 1.7 | 250 | 16Z380 |
8 | 16Z380 008 | 57.3 | 47.2 | 155.1 | 2.3 | 1.5 | 250 | 16Z380 |
9 | 16Z380 009 | 56.7 | 47.5 | 146.8 | 2.1 | 1.4 | 250 | 16Z380 |
10 | 16Z380 571 | 56.2 | 47.6 | 147.6 | 2.3 | 1.6 | 250 | 16Z380 |
11 | 16Z380 011 | 56.3 | 47.2 | 151.2 | 2.2 | 1.5 | 250 | 16Z380 |
12 | 16Z380 012 | 56 | 47.4 | 151.8 | 2.1 | 1.4 | 250 | 16Z380 |
13 | 16Z380 013 | 56.4 | 47.3 | 150.0 | 2.1 | 1.4 | 250 | 16Z380 |
14 | 16Z380 014 | 56.2 | 47.7 | 145.5 | 2.4 | 1.6 | 250 | 16Z380 |
15 | 16Z380 015 | 57.1 | 47.5 | 153.7 | 2.5 | 1.6 | 250 | 16Z380 |
16 | 16Z380 016 | 57.2 | 47.4 | 152.8 | 2.6 | 1.7 | 250 | 16Z380 |
17 | 16Z380 017 | 55.9 | 47.4 | 151.8 | 3.1 | 2.0 | 250 | 16Z380 |
18 | 16Z380 018 | 57 | 47.3 | 154.0 | 2.8 | 1.8 | 250 | 16Z380 |
19 | 16Z380 019 | 56.4 | 47.5 | 150.7 | 2.5 | 1.7 | 250 | 16Z380 |
20 | 16Z380 571 | 57.1 | 47.1 | 156.2 | 2.9 | 1.9 | 250 | 16Z380 |
21 | 16Z380 571 | 56.9 | 47.2 | 154.1 | 2.8 | 1.8 | 250 | 16Z380 |
22 | 16Z380 571 | 56.5 | 47.3 | 154.0 | 2.5 | 1.6 | 250 | 16Z380 |
23 | 16Z380 571 | 57.3 | 47.2 | 155.1 | 2.9 | 1.9 | 250 | 16Z380 |
24 | 16Z380 571 | 57.3 | 47.2 | 154.1 | 2.6 | 1.7 | 250 | 16Z380 |
25 | 16Z380 571 | 57.2 | 47.2 | 154.1 | 2.8 | 1.8 | 250 | 16Z380 |
26 | 16Z380 026 | 57.3 | 47 | 153.4 | 2.3 | 1.5 | 250 | 16Z380 |
27 | 16Z380 571 | 55.8 | 47.4 | 152.8 | 2.6 | 1.7 | 250 | 16Z380 |
28 | 16Z380 571 | 55.6 | 47.4 | 151.8 | 2.8 | 1.8 | 250 | 16Z380 |
29 | 16Z380 571 | 56.2 | 47.3 | 150.0 | 2.4 | 1.6 | 250 | 16Z380 |
30 | 16Z380 030 | 55.8 | 47.3 | 148.0 | 2.1 | 1.4 | 250 | 16Z380 |
31 | 16Z380 031 | 55.7 | 47.3 | 148.0 | 2.1 | 1.4 | 250 | 16Z380 |
32 | 16Z380 032 | 57 | 47.2 | 149.2 | 2.3 | 1.5 | 250 | 16Z380 |
33 | 16Z380 033 | 57.4 | 47.3 | 149.0 | 2.3 | 1.5 | 250 | 16Z380 |
34 | 16Z380 034 | 56.2 | 47.4 | 151.8 | 2.6 | 1.7 | 250 | 16Z380 |
35 | 16Z380 035 | 56.7 | 47.3 | 151.0 | 2.7 | 1.8 | 250 | 16Z380 |
36 | 16Z380 036 | 56.4 | 47.1 | 155.3 | 2.3 | 1.5 | 250 | 16Z380 |
37 | 16Z380 037 | 56.8 | 47.2 | 155.1 | 2.9 | 1.9 | 250 | 16Z380 |
38 | 16Z380 038 | 56.6 | 47.1 | 151.3 | 2.3 | 1.5 | 250 | 16Z380 |
39 | 16Z380 039 | 55.8 | 47.3 | 154.0 | 2.8 | 1.8 | 250 | 16Z380 |
40 | 16Z380 040 | 56.9 | 47.3 | 151.0 | 2.9 | 1.9 | 250 | 16Z380 |
41 | 16Z380 041 | 56.1 | 47.4 | 149.9 | 2.3 | 1.5 | 250 | 16Z380 |
42 | 16Z380 042 | 56.5 | 47.1 | 152.3 | 2.3 | 1.5 | 250 | 16Z380 |
43 | 16Z380 043 | 56.6 | 47.2 | 148.2 | 2.2 | 1.5 | 250 | 16Z380 |
44 | 16Z380 044 | 55.9 | 47.3 | 148.0 | 2.3 | 1.6 | 250 | 16Z380 |
45 | 16Z380 045 | 56.2 | 47.4 | 151.8 | 2.9 | 1.9 | 250 | 16Z380 |
46 | 16Z380 046 | 57.1 | 47.1 | 152.3 | 2.8 | 1.8 | 250 | 16Z380 |
47 | 16Z380 047 | 57.1 | 47.2 | 150.2 | 2.4 | 1.6 | 250 | 16Z380 |
48 | 16Z380 048 | 56.2 | 47.4 | 152.8 | 2.9 | 1.9 | 250 | 16Z380 |
49 | 16Z380 049 | 57 | 47.3 | 150.0 | 3 | 2.0 | 250 | 16Z380 |
50 | 16Z380 050 | 56.2 | 47.2 | 152.1 | 2.7 | 1.8 | 250 | 16Z380 |
Established in 1998. Our company possesses 3 production lines for production of various seamless gas cylinders. The annual production and sale for gas cylinders of below 20L for 600 thousand pieces, accounting for 90% domestic share in small size gas cylinder market. The recently set up new production line for 0.4L-80L emergency respirator, colliery escape capsule and refuge chamber has the annual production of 700 thousand pieces of cylinders. By the year 2013, the total specifications we do ascent to 109 types to meet different customers’ requirement.
Our major products are oxygen cylinder, nitrogen gas cylinder, carbon dioxide gas cylinder, argon gas cylinder, other industrial gas cylinder, medical oxygen gas cylindersupply unit, etc., with wide application for fields of medical apparatus and instruments, engineering machinery, colliery rescue, gas industry, welding-cutting machinery, and chemical industry. Our cryogenic vessels production line mainly produce cryogenic liquid storage tanks, welding insulation cylinders, cryogenic reaction device, cryogenic tanks, cryogenic ISO tank container and air temperature vaporizer. /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Material: | Aluminum |
---|---|
Structure: | Gas – Liquid Damping Cylinder |
Power: | Hydraulic |
Standard: | Standard |
Pressure Direction: | Single-acting Cylinder |
Double-Acting Cylinder Type: | Common Cylinder |
Customization: |
Available
|
|
---|
Can hydraulic cylinders be used for precise operations like CNC machining or molding?
Yes, hydraulic cylinders can be used for precise operations like CNC machining or molding. While hydraulic systems are commonly associated with heavy-duty applications, they can also provide the necessary precision and control required for precise operations in CNC machining and molding processes. Here’s a detailed explanation of how hydraulic cylinders can be utilized for such precise operations:
1. Force and Control:
– Hydraulic cylinders are capable of generating substantial force, which is essential for precise operations in CNC machining and molding. By using hydraulic pressure, the cylinders can deliver the required force to cut or shape materials accurately or exert pressure for molding operations. The hydraulic system allows precise control over the force applied, ensuring consistent and reliable performance.
2. Adjustable Speed and Positioning:
– Hydraulic cylinders offer adjustable speed and precise positioning capabilities, making them suitable for precise operations. By controlling the flow of hydraulic fluid, the speed of the cylinder’s movement can be adjusted according to specific requirements. This adaptability allows for fine-tuning the machining or molding process, achieving the desired precision in material removal or shaping. Hydraulic systems also enable accurate positioning of tools or molds, ensuring precise operations.
3. Integrated Feedback Systems:
– Advanced hydraulic systems can incorporate feedback sensors and control mechanisms to enhance precision in CNC machining and molding. These sensors provide real-time information about the position, speed, and force exerted by the hydraulic cylinders. The control system processes this data and adjusts the flow of hydraulic fluid accordingly, allowing for precise and accurate control over the operations. The feedback systems help maintain consistent performance and compensate for any deviations, ensuring high precision.
4. Damping and Vibration Control:
– Hydraulic cylinders can be equipped with damping mechanisms to minimize vibrations and ensure stability during CNC machining or molding operations. Vibrations can negatively impact precision by causing tool chatter or material deformation. By incorporating cushioning or damping features, hydraulic cylinders help absorb shocks and suppress vibrations, resulting in smoother and more accurate operations.
5. Customization and Adaptability:
– Hydraulic cylinders can be customized and adapted to meet the specific requirements of CNC machining or molding processes. Engineers can design cylinders with unique dimensions, stroke lengths, mounting options, and sealing arrangements to fit into equipment or systems with precise specifications. Customized hydraulic cylinders ensure optimal performance and compatibility for precise operations, enabling seamless integration into CNC machines or molding equipment.
6. Energy Efficiency:
– Hydraulic systems can be designed to be energy-efficient, contributing to cost savings in CNC machining or molding operations. By utilizing variable speed pumps, efficient control valves, and well-designed hydraulic circuits, energy consumption can be optimized. This efficiency reduces heat generation, leading to improved stability and precision in operations while minimizing energy costs.
7. Maintenance and Calibration:
– Regular maintenance and calibration of hydraulic systems are essential to maintain their precision in CNC machining or molding applications. Proper lubrication, inspection of seals, and replacement of worn-out components help ensure optimal performance. Regular calibration of control systems and feedback sensors ensures accurate readings and reliable operation, contributing to precision in machining or molding processes.
In summary, hydraulic cylinders can be effectively used for precise operations like CNC machining or molding. Their ability to generate substantial force, adjustable speed and positioning, integration with feedback systems, damping and vibration control, customization and adaptability, energy efficiency, and proper maintenance contribute to achieving the required precision in these operations. By leveraging the strengths of hydraulic systems, manufacturers can enhance the accuracy and reliability of CNC machining or molding processes, resulting in high-quality products and improved productivity.
Contribution of Hydraulic Cylinders to the Precision of Robotic and Automation Systems
Hydraulic cylinders play a significant role in enhancing the precision of robotic and automation systems. These systems rely on precise and controlled movements to perform various tasks with accuracy and repeatability. Let’s explore how hydraulic cylinders contribute to the precision of robotic and automation systems:
- Precise Positioning: Hydraulic cylinders enable precise positioning of robotic arms or automation components. They provide accurate control over the linear motion required for tasks such as picking, placing, and assembly. By precisely controlling the extension and retraction of the hydraulic cylinder, the system can achieve the desired position with high accuracy, ensuring precise alignment and consistent results.
- Controlled Motion: Hydraulic cylinders offer controlled and smooth motion, which is crucial for precise operation in robotic and automation systems. The flow of hydraulic fluid can be precisely regulated to control the speed and acceleration of the cylinder’s movement. This precise control allows for gentle and controlled movements, minimizing vibrations, overshooting, or jerky motions that could affect the accuracy of the system.
- Force Control: Hydraulic cylinders provide force control capabilities that contribute to precision in robotic and automation systems. By adjusting the hydraulic pressure, the force exerted by the cylinder can be precisely controlled. This is particularly valuable in applications that require delicate force-sensitive tasks, such as gripping fragile objects or performing precise force feedback during assembly or testing processes.
- Load Handling: Hydraulic cylinders are capable of handling heavy loads, allowing robotic and automation systems to manipulate and transport objects with precision. The high force capabilities of hydraulic cylinders ensure secure and stable handling of loads, minimizing the risk of slippage or imprecise positioning. This is crucial in applications where precise control over heavy objects is required, such as material handling or industrial assembly processes.
- Durability and Reliability: Hydraulic cylinders are known for their durability and reliability in demanding industrial environments. The ability to withstand repeated use, high loads, and harsh conditions ensures consistent performance over time. This reliability contributes to the precision of robotic and automation systems, as any deviation or failure in the cylinder’s movement could lead to inaccuracies or disruptions in the system’s operation.
In summary, hydraulic cylinders make significant contributions to the precision of robotic and automation systems by enabling precise positioning, controlled motion, force control, load handling, and offering durability and reliability. These capabilities ensure accurate and repeatable movements, minimize errors, and enhance the overall precision of the system. By incorporating hydraulic cylinders into robotic and automation systems, manufacturers can achieve higher levels of precision, efficiency, and productivity in various industrial applications.
How do hydraulic cylinders contribute to the efficiency of heavy machinery like excavators?
Hydraulic cylinders play a crucial role in enhancing the efficiency and performance of heavy machinery, such as excavators. These powerful hydraulic actuators enable excavators to perform various tasks efficiently and effectively. Here’s a detailed explanation of how hydraulic cylinders contribute to the efficiency of heavy machinery like excavators:
1. Force and Power:
– Hydraulic cylinders provide the necessary force and power required for the excavation process. They convert hydraulic energy from the hydraulic fluid into linear mechanical force, allowing the excavator to exert significant pushing and pulling forces. The force generated by hydraulic cylinders enables the digging arm or boom of the excavator to penetrate and break through tough materials, such as soil, rocks, or concrete, with ease and efficiency.
2. Precise Control:
– Hydraulic cylinders offer precise control over the movement of excavator components. By regulating the flow of hydraulic fluid to the cylinders, operators can control the speed, direction, and positioning of the excavator’s arm, boom, bucket, and other attachments. This precise control allows operators to perform delicate operations, such as fine grading or precise material placement, with accuracy and efficiency.
3. Versatility and Adaptability:
– Hydraulic cylinders enable excavators to perform a wide range of tasks by facilitating the quick and easy interchangeability of attachments. Excavators can be equipped with various specialized attachments, including buckets, breakers, grapples, and augers, which can be efficiently connected and disconnected using hydraulic cylinders. This versatility and adaptability enhance the efficiency of excavators by enabling them to tackle different tasks without the need for extensive manual adjustments or downtime.
4. Increased Productivity:
– The power and control provided by hydraulic cylinders significantly increase the productivity of excavators. Excavators equipped with hydraulic cylinders can complete tasks more quickly and efficiently compared to manual or mechanically-driven machinery. The precise control over movements allows for faster cycle times, reduced idle time, and improved overall productivity on the worksite.
5. Enhanced Digging and Lifting Capabilities:
– Hydraulic cylinders enable excavators to perform digging and lifting operations with enhanced capabilities. The force generated by hydraulic cylinders allows excavators to dig deeper and lift heavier loads compared to other types of machinery. This increased digging and lifting capacity contributes to the efficiency of excavators by reducing the number of passes required to complete a task and improving overall productivity.
6. Durability and Reliability:
– Hydraulic cylinders are designed to withstand heavy loads, challenging operating conditions, and frequent use. They are built with robust materials, such as high-strength steel, and undergo stringent quality control measures during manufacturing. The durability and reliability of hydraulic cylinders ensure that excavators can operate efficiently even in demanding environments, minimizing downtime and maximizing productivity.
7. Energy Efficiency:
– Hydraulic systems, including hydraulic cylinders, are known for their energy efficiency. Hydraulic cylinders can deliver high force outputs while consuming relatively low amounts of hydraulic fluid. This energy efficiency translates to lower fuel consumption and reduced operating costs for excavators. The efficient use of hydraulic power contributes to the overall efficiency and sustainability of heavy machinery operations.
8. Safety:
– Hydraulic cylinders play a vital role in ensuring the safety of excavator operations. They provide controlled and predictable movements, reducing the risk of sudden or uncontrolled motions. The precise control offered by hydraulic cylinders allows operators to perform tasks safely and accurately, minimizing the chances of accidents or damage to the machinery or surrounding environment.
Overall, hydraulic cylinders are essential components that significantly contribute to the efficiency of heavy machinery like excavators. By providing force, precise control, versatility, increased productivity, enhanced capabilities, durability, energy efficiency, and safety, hydraulic cylinders enable excavators to perform a wide range of tasks efficiently and effectively in various industries, including construction, mining, and landscaping.
editor by CX 2023-12-18
China best 40L Medical Oxygen Cylinder Rack with High Pressure vacuum pump ac
Product Description
Model Number: ISO219-40-150
valve:QF-2C
Material: Steel 37Mn
new seamless steel gas cylinder for N2,O2
Industrial nitrogen Gas
Pressure: High
Place of Origin: China (Mainland)
Brand Name: DSW
Thickness of seamless:5.7mm
weight of seamless: 47to 50kg
working pressure:150bar
test pressure: 250bar
TP:250KG/CM2
PW:150KG/CM2
40L and 50L medical oxygen cylinders |
|||||||
Type | (mm) Outside Diameter |
(L) Water Capacity |
(mm)
Height |
(Kg) Weight(Without valve,cap) |
(Mpa) Working Pressure |
(mm) Design Wall Thickness |
Material Grades |
ISO232-40-150 | 219 | 40 | 1167 | 43 | 200 | 5.2 | 37Mn |
ISO232-47-150 | 47 | 1351 | 49 | ||||
ISO232-50-150 | 50 | 1430 | 51.6 | ||||
ISO232-40-200 | 232 | 40 | 1156 | 44.9 | 200 | 5.2 | 34CrMo4 |
ISO232-46.7-200 | 46.7 | 1333 | 51 | ||||
ISO232-47-200 | 47 | 1341 | 51.3 | ||||
ISO232-50-200 | 50 | 1420 | 54 | ||||
EN232-40-210 | 232(TPED) | 40 | 1156 | 44.9 | 230 | 5.8 | 34CrMo4 |
EN232-46.7-210 | 46.7 | 1333 | 51 | ||||
EN232-47-210 | 47 | 1341 | 51.3 | ||||
EN232-50-210 | 50 | 1420 | 54 | ||||
EN232-40-230 | 40 | 1156 | 44.9 | 230 | 5.8 | 34CrMo4 | |
EN232-46.7-230 | 46.7 | 1333 | 51 | ||||
ISO232-47-230 | 47 | 1341 | 51.3 | ||||
ISO232-50-230 | 50 | 1420 | 54 | ||||
ISO267-40-150 | 267 | 40 | 922 | 43.3 | 150 | 5.8 | 37Mn |
ISO267-50-150 | 50 | 1119 | 51.3 |
100% new high quality seamless steel pipe from Bao Shan Iron co.,ltd (Baosteel).
Total 5 working line make 3000pcs per day for oxygen gas cylinder, argon gas cylinder, helium gas cylinder, Nitrogen gas cylinder , Co2 gas cylinder, N2O gas cylinder..etc
China top 1 advanced heat treatment machine. And China top 1 internal polishing machine to make high purity gas cylinder with 99.999% oxygen gas, helium gas, N2O gas and argon gas.
100% Hydrostatic prssure test and leakage test to keep the quality
Advanced automatic spraying working line make the spraying at high top quality , no any bubble , without shrinkage and distoration .
Japan imported shoulder marking machine make it the most qualified ones .
CHINAMFG seamless gas cylinder have nice appearance shoulders because we use shape-correction machine treatment make the cylinder shoulder most beautiful shape which other supplier can’t be compared.
Laboratory test standard ISO9809-3 and ISO9809-1, DOT-3AA, EN1964,GB5099 ..etc
Specification
RECORD OF HYDROSTATIC TESTS ON CYLINDERS TIME ≥ 60S |
||||||||
S.N | Serial No. | The weight without valve&cap(kg) | Volumetric Capacity(L) | Total expansion(ml) | Permanent expansion(ml) | Percent of Permanent to totalexpanison(%) | Test Pressure 250Bar | Lot and Batch No. |
401 | 2070968 057 | 48.6 | 40.0 | 200.3 | 2.6 | 1.3 | 250 | 2070968 |
402 | 2070968 058 | 48.3 | 40.0 | 204.2 | 2.3 | 1.1 | 250 | 2070968 |
403 | 2070968 059 | 48.2 | 40.1 | 205.1 | 2.6 | 1.3 | 250 | 2070968 |
404 | 2070968 060 | 48.5 | 40.1 | 195.2 | 2.6 | 1.3 | 250 | 2070968 |
405 | 2070968 061 | 48.2 | 40.1 | 205.1 | 2.7 | 1.3 | 250 | 2070968 |
406 | 2070968 062 | 48.6 | 40.0 | 206.2 | 2.2 | 1.1 | 250 | 2070968 |
407 | 2070968 063 | 48.3 | 40.3 | 193.9 | 2.2 | 1.1 | 250 | 2070968 |
408 | 2070968 064 | 48.0 | 40.1 | 200.1 | 2.9 | 1.4 | 250 | 2070968 |
409 | 2070968 065 | 48.4 | 40.0 | 205.2 | 2.9 | 1.4 | 250 | 2070968 |
410 | 2070968 066 | 47.9 | 40.1 | 200.1 | 2.6 | 1.3 | 250 | 2070968 |
411 | 2070968 067 | 47.9 | 40.2 | 201.0 | 2.2 | 1.1 | 250 | 2070968 |
412 | 2070968 068 | 48.7 | 40.0 | 200.3 | 3.0 | 1.5 | 250 | 2070968 |
413 | 2070968 069 | 48.3 | 40.2 | 201.0 | 2.8 | 1.4 | 250 | 2070968 |
414 | 2070968 070 | 48.2 | 40.1 | 197.2 | 2.5 | 1.3 | 250 | 2070968 |
415 | 2070968 071 | 47.9 | 40.0 | 206.2 | 2.6 | 1.3 | 250 | 2070968 |
416 | 2070968 072 | 48.5 | 40.4 | 193.8 | 3.0 | 1.5 | 250 | 2070968 |
417 | 2070968 073 | 49.0 | 40.0 | 201.3 | 3.0 | 1.5 | 250 | 2070968 |
418 | 2070968 074 | 49.2 | 40.1 | 201.1 | 2.3 | 1.1 | 250 | 2070968 |
419 | 2070968 075 | 48.3 | 40.2 | 196.0 | 2.3 | 1.2 | 250 | 2070968 |
420 | 2070968 076 | 47.7 | 40.2 | 198.0 | 2.3 | 1.2 | 250 | 2070968 |
421 | 2070968 077 | 48.2 | 40.2 | 198.0 | 2.3 | 1.2 | 250 | 2070968 |
422 | 2070968 078 | 48.5 | 40.3 | 201.8 | 2.3 | 1.1 | 250 | 2070968 |
423 | 2070968 079 | 49.2 | 40.1 | 194.2 | 2.7 | 1.4 | 250 | 2070968 |
424 | 2070968 080 | 48.5 | 40.4 | 200.7 | 3.0 | 1.5 | 250 | 2070968 |
425 | 2070968 081 | 48.2 | 40.1 | 197.2 | 2.3 | 1.2 | 250 | 2070968 |
426 | 2070968 082 | 48.3 | 40.0 | 200.3 | 2.7 | 1.3 | 250 | 2070968 |
427 | 2070968 083 | 48.5 | 40.3 | 197.9 | 3.0 | 1.5 | 250 | 2070968 |
428 | 2070968 084 | 48.3 | 40.1 | 200.1 | 2.3 | 1.1 | 250 | 2070968 |
429 | 2070968 085 | 48.6 | 40.1 | 194.2 | 2.3 | 1.2 | 250 | 2070968 |
430 | 2070968 086 | 48.5 | 40.1 | 199.1 | 2.6 | 1.3 | 250 | 2070968 |
431 | 2070968 087 | 48.4 | 40.1 | 199.1 | 2.9 | 1.5 | 250 | 2070968 |
432 | 2070968 088 | 48.1 | 40.2 | 203.9 | 2.3 | 1.1 | 250 | 2070968 |
433 | 2070968 089 | 48.6 | 40.2 | 198.0 | 3.0 | 1.5 | 250 | 2070968 |
434 | 2070968 090 | 48.0 | 40.2 | 201.0 | 2.5 | 1.2 | 250 | 2070968 |
435 | 2070968 091 | 49.6 | 40.0 | 206.2 | 3.0 | 1.5 | 250 | 2070968 |
436 | 2070968 092 | 48.5 | 40.1 | 197.2 | 2.3 | 1.2 | 250 | 2070968 |
437 | 2070968 093 | 48.1 | 40.1 | 197.2 | 2.3 | 1.2 | 250 | 2070968 |
438 | 2070968 094 | 48.0 | 40.1 | 197.2 | 2.2 | 1.1 | 250 | 2070968 |
439 | 2070968 095 | 48.1 | 40.1 | 197.2 | 2.9 | 1.5 | 250 | 2070968 |
440 | 2070968 096 | 48.3 | 40.1 | 199.1 | 2.3 | 1.2 | 250 | 2070968 |
441 | 2070968 097 | 48.1 | 40.2 | 203.0 | 2.4 | 1.2 | 250 | 2070968 |
442 | 2070968 098 | 48.6 | 40.1 | 199.1 | 2.6 | 1.3 | 250 | 2070968 |
443 | 2070968 099 | 48.5 | 40.2 | 198.0 | 2.3 | 1.2 | 250 | 2070968 |
444 | 2070968 100 | 48.4 | 40.1 | 202.1 | 2.4 | 1.2 | 250 | 2070968 |
445 | 2070968 101 | 48.7 | 40.0 | 204.2 | 2.3 | 1.1 | 250 | 2070968 |
446 | 2070968 102 | 49.2 | 40.0 | 204.2 | 3.0 | 1.5 | 250 | 2070968 |
447 | 2070968 103 | 48.1 | 40.2 | 200.0 | 2.6 | 1.3 | 250 | 2070968 |
448 | 2070968 104 | 48.0 | 40.1 | 202.1 | 3.0 | 1.5 | 250 | 2070968 |
449 | 2070968 105 | 48.3 | 40.1 | 196.2 | 2.4 | 1.2 | 250 | 2070968 |
450 | 2070968 106 | 48.8 | 40.0 | 206.2 | 2.2 | 1.1 | 250 | 2070968 |
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Material: | Steel |
---|---|
Usage: | Oxygen Gas and Nitrogen Cylinder |
Structure: | Gas – Liquid Damping Cylinder |
Power: | Hydraulic |
Standard: | Standard |
Pressure Direction: | Single-acting Cylinder |
Customization: |
Available
|
|
---|
Can hydraulic cylinders be retrofitted onto existing equipment for improved functionality?
Yes, hydraulic cylinders can be retrofitted onto existing equipment to enhance functionality and performance. Retrofitting hydraulic cylinders onto existing machinery or equipment offers several benefits, including increased power, improved control, enhanced precision, and versatility. Here’s a detailed explanation of how hydraulic cylinders can be retrofitted onto existing equipment for improved functionality:
1. Increased Power:
– Retrofitting hydraulic cylinders allows for the addition of hydraulic power to the existing equipment. By integrating hydraulic cylinders, the equipment can generate higher forces and handle heavier loads. This increased power enables the equipment to perform tasks that were previously challenging or impossible. For example, a retrofit hydraulic cylinder on a crane can enhance its lifting capacity and enable it to handle heavier loads more efficiently.
2. Improved Control:
– Hydraulic cylinders provide precise control over the motion and positioning of equipment. By retrofitting hydraulic cylinders, operators gain better control over the speed, force, and direction of movement. The addition of hydraulic control valves and a hydraulic power unit allows for fine-tuning of the equipment’s operation. Improved control facilitates safer and more efficient operation, reducing the risk of damage and improving overall productivity.
3. Enhanced Precision:
– Retrofitting hydraulic cylinders onto existing equipment can significantly improve precision and accuracy. Hydraulic systems offer precise control over movement, enabling smooth and controlled motion. This enhanced precision is beneficial in applications where precise positioning or repetitive movements are required. For instance, retrofitting hydraulic cylinders onto a robotic arm can enhance its accuracy and repeatability, making it more suitable for tasks that demand high precision.
4. Versatility and Adaptability:
– Retrofitting hydraulic cylinders can increase the versatility and adaptability of existing equipment. Hydraulic systems can be easily integrated with various types of machinery, allowing for the utilization of hydraulic power across different applications. The modular nature of hydraulic components facilitates the retrofitting process, enabling the equipment to perform a broader range of tasks. This versatility is particularly advantageous in industries where equipment needs to adapt to changing operational requirements.
5. Retrofit Kits and Customization:
– Manufacturers often provide retrofit kits that include all the necessary components for integrating hydraulic cylinders onto existing equipment. These kits typically consist of hydraulic cylinders, mounting brackets, hoses, fittings, control valves, and other required accessories. Retrofit kits simplify the retrofitting process and ensure compatibility between the hydraulic components and the existing equipment. Additionally, manufacturers can offer customization options to tailor the retrofit solution to specific equipment and application needs.
6. Cost-Effective Solution:
– Retrofitting hydraulic cylinders onto existing equipment can be a cost-effective solution compared to purchasing new machinery. By leveraging the existing equipment’s structural framework and mechanical components, the overall cost of upgrading can be reduced. Retrofitting also minimizes downtime since the equipment does not need to be completely replaced. Furthermore, the improved functionality and performance resulting from the retrofit can lead to increased productivity and cost savings in the long run.
7. Professional Installation and Expertise:
– Retrofitting hydraulic cylinders onto existing equipment often requires professional installation and expertise. Working with experienced hydraulic system integrators or manufacturers ensures proper installation, compatibility, and optimal performance of the retrofit solution. These professionals can assess the existing equipment, recommend suitable hydraulic components, and carry out the retrofitting process efficiently. Their knowledge and expertise contribute to the successful integration of hydraulic cylinders and the overall improvement of equipment functionality.
In summary, hydraulic cylinders can indeed be retrofitted onto existing equipment to improve functionality. This retrofitting process offers advantages such as increased power, improved control, enhanced precision, versatility, cost-effectiveness, and access to retrofit kits and customization options. By retrofitting hydraulic cylinders, existing equipment can be upgraded to meet evolving operational needs, extend its lifespan, and enhance overall performance.
Advancements in Hydraulic Cylinder Technology Improving Corrosion Resistance
Advancements in hydraulic cylinder technology have led to significant improvements in corrosion resistance. Corrosion is a major concern in hydraulic systems, especially in environments where cylinders are exposed to moisture, chemicals, or corrosive agents. These advancements aim to enhance the durability and longevity of hydraulic cylinders. Let’s explore some of the key advancements in hydraulic cylinder technology that have improved corrosion resistance:
- Corrosion-Resistant Materials: The use of corrosion-resistant materials is a fundamental advancement in hydraulic cylinder technology. Stainless steel, for example, offers excellent resistance to corrosion, making it a popular choice in marine, offshore, and other corrosive environments. Additionally, advancements in metallurgy have led to the development of specialized alloys and coatings that provide enhanced corrosion resistance, extending the lifespan of hydraulic cylinders.
- Surface Treatments and Coatings: Various surface treatments and coatings have been developed to protect hydraulic cylinders from corrosion. These treatments can include electroplating, galvanizing, powder coating, and specialized corrosion-resistant coatings. These coatings create a barrier between the cylinder surface and corrosive elements, preventing direct contact and inhibiting the onset of corrosion. The selection of appropriate coatings depends on the specific application and environmental conditions.
- Sealing Technology: Effective sealing systems are crucial in preventing water, moisture, and contaminants from entering the cylinder and causing corrosion. Advancements in sealing technology have led to the development of high-quality seals and advanced sealing designs that offer superior resistance to corrosion. These seals are typically made from materials specifically engineered to withstand corrosive environments, ensuring long-term sealing performance and minimizing the risk of corrosion-related issues.
- Improved Surface Finishes: The surface finish of hydraulic cylinders plays a role in their resistance to corrosion. Advancements in machining and polishing techniques have allowed for smoother and more uniform surface finishes. Smoother surfaces reduce the likelihood of corrosion initiation and make it easier to clean and maintain hydraulic cylinders. Additionally, specialized finishes, such as passivation or chemical treatments, can be applied to further enhance corrosion resistance.
- Environmental Protection Features: Hydraulic cylinders can be equipped with additional features to protect against corrosion. These features may include protective boots, bellows, or shields that guard vulnerable areas from exposure to corrosive agents. By incorporating these protective elements into the design, hydraulic cylinders can withstand harsh environments and minimize the risk of corrosion-related damage.
In summary, advancements in hydraulic cylinder technology have significantly improved corrosion resistance. The use of corrosion-resistant materials, advanced surface treatments and coatings, innovative sealing technology, improved surface finishes, and the incorporation of environmental protection features have all contributed to enhanced durability and longevity of hydraulic cylinders in corrosive environments. These advancements ensure reliable performance and reduce the maintenance and replacement costs associated with corrosion-related issues.
How do hydraulic cylinders ensure precise and controlled movement in equipment?
Hydraulic cylinders are widely used in various equipment and machinery to provide precise and controlled movement. They utilize hydraulic fluid and mechanical components to achieve accurate positioning, smooth operation, and reliable control. Here’s a detailed explanation of how hydraulic cylinders ensure precise and controlled movement in equipment:
1. Hydraulic Principle:
– Hydraulic cylinders operate based on Pascal’s law, which states that pressure exerted on a fluid is transmitted equally in all directions. The hydraulic fluid is contained within the cylinder, and when pressure is applied, it acts on the piston, generating force. By controlling the pressure and flow of hydraulic fluid, the movement of the cylinder can be precisely regulated, allowing for accurate and controlled motion.
2. Force and Load Management:
– Hydraulic cylinders are designed to handle specific loads and forces. The force generated by the hydraulic cylinder depends on the hydraulic pressure and the surface area of the piston. By adjusting the pressure, the force output can be controlled. This allows for precise management of the load and ensures that the cylinder can handle the required force without exerting excessive or insufficient force. Proper load management contributes to the precise and controlled movement of the equipment.
3. Control Valves:
– Control valves play a crucial role in regulating the flow and direction of hydraulic fluid within the cylinder. These valves allow operators to control the extension and retraction of the cylinder, adjust the speed of movement, and stop or hold the cylinder at any desired position. By manipulating the control valves, precise and controlled movement can be achieved, enabling operators to position equipment accurately and perform specific tasks with precision.
4. Flow Control:
– Hydraulic cylinders incorporate flow control valves to manage the rate of hydraulic fluid flow. These valves control the speed of the cylinder’s extension and retraction, allowing for smooth and controlled movement. By adjusting the flow rate, operators can precisely control the speed of the cylinder, ensuring that it moves at the desired rate without sudden or erratic movements. Flow control contributes to the overall precision and control of the equipment’s movement.
5. Position Sensing:
– To ensure precise movement, hydraulic cylinders can be equipped with position sensing devices such as linear transducers or proximity sensors. These sensors provide feedback on the position of the cylinder, allowing for accurate position control and closed-loop control systems. By continuously monitoring the position, the equipment’s movement can be controlled with high accuracy, enabling precise positioning and operation.
6. Proportional Control:
– Advanced hydraulic systems utilize proportional control technology, which allows for precise and fine-tuned control of the hydraulic cylinder’s movement. Proportional valves, often operated by electronic control systems, provide variable flow rates and pressure adjustments. This technology enables precise control of speed, force, and position, resulting in highly accurate and controlled movement of the equipment.
7. Cushioning and Damping:
– Hydraulic cylinders can incorporate cushioning and damping mechanisms to ensure smooth and controlled movement at the end of the stroke. Cushioning features, such as adjustable cushions or shock absorbers, reduce the impact and decelerate the cylinder before reaching the end of the stroke. This prevents abrupt stops and minimizes vibrations, contributing to precise and controlled movement.
8. Load Compensation:
– Some hydraulic systems utilize load compensation mechanisms to maintain precise movement even when the load varies. Load-sensing systems monitor the load demand and adjust the hydraulic pressure and flow accordingly to meet that demand. This compensation ensures that the equipment’s movement remains accurate and controlled, regardless of changes in the applied load.
In summary, hydraulic cylinders ensure precise and controlled movement in equipment through the application of hydraulic principles, force and load management, control valves, flow control, position sensing, proportional control, cushioning and damping mechanisms, and load compensation. These features and technologies allow operators to achieve accurate positioning, smooth operation, and reliable control, enabling equipment to perform tasks with precision and efficiency. The combination of hydraulic power and careful design considerations ensures that hydraulic cylinders deliver precise and controlled movement in a wide range of industrial applications.
editor by CX 2023-12-17
China factory Environment Friendly Medical Oxygen Cylinder Sizes vacuum pump belt
Product Description
Aluminum Small Portable Oxygen Cylinder Medical Oxygen Gas Cylinder Small Portable Oxygen Cylinder
Medical Oxygen Cylinder Information:
1.Many years experience in aluminum gas cylinders designing and manufacturing;
2.Professional and powerful team to support the business of our company;
3.Superior raw material to make the high quality products;
4.Various kinds of aluminum gas cylinders provided for clients and customized products can also be accepted.
ZheJiang ETERNAL FAITH INDUSTRY CO.,LTD Oxygen ALUMINIUM CYLINDER |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part NO. | Specification | Water Capacity(L) |
Wall thickness (mm) |
Cylinder Weight(kg) |
Overall Dimension (mm) |
Service Pressure (bar) |
Oxygen Supply Time(min) |
Flow Regulation Range (L/min) |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
MB1 | MT-2/4-2.0 | 2 | 5.5 | 2.2 | 108*340 | 150 | 280 | 0-7 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
MB2 | MT-2/4-2.8 | 2.8 | 6.1 | 2.9 | 120*392 | 150 | 390 | 0-7 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
MB3 | MT-2/4-3.2 | 3.2 | 6.1 | 3.3 | 120*437 | 150 | 420 | 0-7 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
MB4 | MT-2/4-4.0 | 4 | 7.1 | 4.2 | 140*410 | 150 | 560 | 0-7 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
MB5 | MT-4-6.3 | 6.3 | 7.1 | 5.9 | 140*605 | 150 | 9 Fax:
How do hydraulic cylinders handle variations in temperature and harsh operating environments?Hydraulic cylinders are designed to handle variations in temperature and harsh operating environments by incorporating specific features and materials that ensure their durability, reliability, and performance. The ability of hydraulic cylinders to withstand extreme temperatures, corrosive environments, and other harsh conditions is crucial for their successful operation in a wide range of applications. Here’s a detailed explanation of how hydraulic cylinders handle variations in temperature and harsh operating environments: 1. Temperature Range: – Hydraulic cylinders are designed to operate within a specified temperature range. The materials used in their construction, such as cylinder barrels, pistons, seals, and lubricants, are selected to withstand the anticipated temperature variations. Specialized seals and O-rings made from materials like nitrile, Viton, or polyurethane are used to maintain their sealing properties over a wide temperature range. Heat-resistant coatings or thermal insulation may be applied to certain components to protect them from high temperatures. 2. Thermal Expansion: – Hydraulic cylinders are designed to accommodate thermal expansion and contraction that occurs with temperature changes. The materials used in their construction have different coefficients of thermal expansion, allowing the cylinder components to expand or contract at a similar rate. This design consideration prevents excessive stress, binding, or leakage that could result from thermal expansion or contraction. 3. Heat Dissipation: – In applications where hydraulic cylinders are subjected to high temperatures, heat dissipation mechanisms are employed to prevent overheating. Cooling fins or heat sinks may be incorporated into the cylinder design to increase the surface area for heat transfer. In some cases, external cooling methods such as air or liquid cooling systems can be used to maintain optimal operating temperatures. 4. Corrosion Resistance: – Hydraulic cylinders used in harsh operating environments are constructed from materials that exhibit excellent corrosion resistance. Stainless steel, chrome-plated steel, or other corrosion-resistant alloys are commonly used for cylinder components exposed to corrosive substances or environments. Additionally, surface treatments such as coatings, plating, or specialized paints can provide an extra layer of protection against corrosion. 5. Sealing Systems: – Hydraulic cylinders employ sealing systems that are specifically designed to withstand harsh operating environments. The seals used in hydraulic cylinders are selected based on their resistance to temperature extremes, chemicals, abrasion, and other environmental factors. Specialized seal designs, such as wiper seals, rod seals, or high-temperature seals, are utilized to maintain effective sealing and prevent contamination of the hydraulic fluid. 6. Lubrication: – Proper lubrication is essential for the smooth operation and longevity of hydraulic cylinders, particularly in harsh operating environments. Lubricants are selected based on their ability to withstand high temperatures, resist oxidation, and provide effective lubrication under extreme conditions. Regular maintenance and lubrication practices ensure that the cylinder components continue to operate smoothly and reduce the effects of wear and friction. 7. Robust Construction: – Hydraulic cylinders designed for harsh operating environments are built with robust construction techniques to withstand the rigors of such conditions. The cylinder barrels, rods, and other components are manufactured to meet strict quality and durability standards. Welded or bolted construction methods are employed to ensure the structural integrity of the cylinders. Reinforcements, such as flanges or tie rods, may be added to enhance the cylinder’s strength and resistance to external forces. 8. Environmental Protection: – Hydraulic cylinders can be equipped with additional protective features to shield them from harsh operating environments. Protective covers, boots, or bellows can be used to prevent contaminants, debris, or moisture from entering the cylinder and compromising its performance. These protective measures help extend the service life of hydraulic cylinders in demanding conditions. 9. Compliance with Standards: – Hydraulic cylinders manufactured for specific industries or applications often comply with industry standards or regulations related to operating temperature ranges, environmental conditions, or safety requirements. Compliance with these standards ensures that hydraulic cylinders are designed and tested to meet the specific demands of their intended operating environments. In summary, hydraulic cylinders are designed to handle variations in temperature and harsh operating environments by incorporating suitable materials, thermal expansion considerations, heat dissipation mechanisms, corrosion-resistant components, specialized sealing systems, proper lubrication, robust construction techniques, protective features, and compliance with industry standards. These design considerations and features enable hydraulic cylinders to operate reliably and effectively in a wide range of demanding applications and environmental conditions. Can you provide real-world examples of machinery that heavily rely on hydraulic cylinders?Hydraulic cylinders are widely used in various industries and applications due to their ability to provide powerful and precise linear motion. They play a crucial role in enabling the operation of heavy machinery that requires controlled force and movement. Here are some real-world examples of machinery that heavily rely on hydraulic cylinders: 1. Construction Equipment: – Hydraulic cylinders are extensively used in construction machinery, such as excavators, bulldozers, loaders, and cranes. These machines rely on hydraulic cylinders to perform tasks like lifting heavy loads, extending and retracting booms, tilting buckets, and controlling the movement of various components. Hydraulic cylinders provide the power and precision required to handle the demanding conditions and heavy loads encountered in construction projects. 2. Agricultural Machinery: – Many agricultural machines, including tractors, combine harvesters, and sprayers, utilize hydraulic cylinders for critical operations. Hydraulic cylinders are used to control the movement of attachments, such as front loaders, backhoes, and plows. They enable functions like lifting and lowering implements, adjusting cutting heights, and controlling the positioning of harvesting equipment. Hydraulic cylinders enhance efficiency and productivity in agricultural operations. 3. Material Handling Equipment: – Hydraulic cylinders are integral components of material handling equipment, such as forklifts, pallet jacks, and cranes. These machines rely on hydraulic cylinders to lift and lower loads, tilt platforms or forks, and control the movement of lifting mechanisms. Hydraulic cylinders provide the necessary strength and precision to handle heavy loads and ensure safe and efficient material handling operations. 4. Industrial Machinery: – Various industrial machinery and equipment heavily rely on hydraulic cylinders for critical functions. Examples include hydraulic presses, injection molding machines, metal-forming machines, and hydraulic-powered robots. Hydraulic cylinders enable precise control of force and movement in these applications, allowing for accurate shaping, pressing, and assembly processes. 5. Mining Equipment: – Hydraulic cylinders are extensively used in mining machinery and equipment. Underground mining machines, such as continuous miners and longwall shearers, utilize hydraulic cylinders for cutting, shearing, and roof support operations. Surface mining equipment, including hydraulic shovels, draglines, and haul trucks, rely on hydraulic cylinders for tasks like bucket movement, boom extension, and vehicle suspension. 6. Automotive Industry: – The automotive industry extensively utilizes hydraulic cylinders in various applications. Hydraulic cylinders are employed in vehicle suspension systems, power steering systems, convertible tops, and hydraulic brake systems. They enable smooth and controlled movement, precise steering, and efficient braking in automobiles. 7. Aerospace and Aviation: – Hydraulic cylinders are utilized in aerospace and aviation applications, such as aircraft landing gear systems, wing flaps, and cargo handling equipment. Hydraulic cylinders provide the necessary force and control for extending and retracting landing gear, adjusting wing flaps, and operating cargo doors, ensuring safe and reliable aircraft operations. 8. Marine and Offshore Industry: – Hydraulic cylinders are essential components in marine and offshore equipment, including ship cranes, winches, and hydraulic-powered anchor systems. They enable lifting, lowering, and positioning of heavy loads, as well as the control of various marine equipment. These are just a few examples of machinery and industries that heavily rely on hydraulic cylinders. The versatility, power, and precise control offered by hydraulic cylinders make them indispensable in a wide range of applications, where controlled linear motion and force are essential. What are the common signs of wear or leakage that indicate hydraulic cylinder issues?Hydraulic cylinders are critical components in hydraulic systems, and wear or leakage can lead to performance issues and potential system failures. It is important to be aware of the common signs that indicate hydraulic cylinder problems. Here’s a detailed explanation of the common signs of wear or leakage that indicate hydraulic cylinder issues: 1. Fluid Leakage: – Fluid leakage is one of the most obvious signs of hydraulic cylinder problems. If you notice hydraulic fluid leaking from the cylinder, it indicates a seal failure or damage to the cylinder. Leaking fluid may be visible around the rod, piston, or cylinder body. It is important to address fluid leakage promptly as it can lead to a loss of system efficiency, contamination of the surrounding environment, and potential damage to other system components. 2. Reduced Performance: – Wear or internal damage to the hydraulic cylinder can result in reduced performance. You may notice a decrease in the cylinder’s force output, slower operation, or difficulty in extending or retracting the cylinder. Reduced performance can be indicative of worn seals, damaged piston or rod, internal leakage, or contamination within the cylinder. Any noticeable decrease in the cylinder’s performance should be inspected and addressed to prevent further damage or system inefficiencies. 3. Abnormal Noise or Vibrations: – Unusual noise or vibrations during the operation of a hydraulic cylinder can indicate internal wear or damage. Excessive noise, knocking sounds, or vibrations that are not typical for the system may suggest problems such as worn bearings, misalignment, or loose internal components. These signs should be investigated to identify the source of the issue and take appropriate corrective measures. 4. Excessive Heat: – Overheating of the hydraulic cylinder is another sign of potential issues. If the cylinder feels excessively hot to the touch during normal operation, it may indicate problems such as internal leakage, fluid contamination, or inadequate lubrication. Excessive heat can lead to accelerated wear, reduced efficiency, and overall system malfunctions. Monitoring the temperature of the hydraulic cylinder is important to detect and address potential problems. 5. External Damage: – Physical damage to the hydraulic cylinder, such as dents, scratches, or bent rods, can contribute to wear and leakage issues. External damage can compromise the integrity of the cylinder, leading to fluid leakage, misalignment, or inefficient operation. Regular inspection of the cylinder’s external condition is essential to identify any visible signs of damage and take appropriate actions. 6. Seal Failure: – Hydraulic cylinder seals are critical components that prevent fluid leakage and maintain system integrity. Signs of seal failure include fluid leakage, reduced performance, and increased friction during cylinder operation. Damaged or worn seals should be replaced promptly to prevent further deterioration of the cylinder’s performance and potential damage to other system components. 7. Contamination: – Contamination within the hydraulic cylinder can cause wear, damage to seals, and overall system inefficiencies. Signs of contamination include the presence of foreign particles, debris, or sludge in the hydraulic fluid or visible damage to seals and other internal components. Regular fluid analysis and maintenance practices should be implemented to prevent contamination and address any signs of contamination promptly. 8. Irregular Seal Wear: – Hydraulic cylinder seals can wear over time due to friction, pressure, and operating conditions. Irregular seal wear patterns, such as uneven wear or excessive wear in specific areas, may indicate misalignment or improper installation. Monitoring the condition of the seals during regular maintenance can help identify potential issues and prevent premature seal failure. It is important to address these common signs of wear or leakage promptly to prevent further damage, ensure the optimal performance of hydraulic cylinders, and maintain the overall efficiency and reliability of the hydraulic system. Regular inspection, maintenance, and timely repairs or replacements of damaged components are key to mitigating hydraulic cylinder issues and maximizing system longevity. China factory 40L Medical Portable Oxygen Cylinder supplierProduct Description
Our Seamless Steel Oxygen Cylinders are mainly produced conformity with Standard GB5099-94, ISO9809-1/3 and EN1964. The raw material is either Seamless Steel Pipe or Steel Billet.
Advantages of our gas cylinders:
HIGH QUALITY
COMPETITVE PRICE
GOOD AND PROFESSIONAL SERVICE
FAST DELIVERY TIME
OEM ACCEPTED
How do hydraulic cylinders handle the challenges of precise positioning and control?Hydraulic cylinders are designed to handle the challenges of precise positioning and control with a combination of engineering principles and advanced control systems. These challenges often arise in applications where accurate and controlled movements are required, such as in industrial automation, construction, and material handling. Here’s a detailed explanation of how hydraulic cylinders overcome these challenges: 1. Fluid Power Control: – Hydraulic cylinders utilize fluid power control to achieve precise positioning and control. The hydraulic system consists of a hydraulic pump, control valves, and hydraulic fluid. By regulating the flow of hydraulic fluid into and out of the cylinder, operators can control the speed, direction, and force exerted by the cylinder. The fluid power control allows for smooth and accurate movements, enabling precise positioning of the hydraulic cylinder and the attached load. 2. Control Valves: – Control valves play a crucial role in handling the challenges of precise positioning and control. These valves are responsible for directing the flow of hydraulic fluid within the system. They can be manually operated or electronically controlled. Control valves allow operators to adjust the flow rate of the hydraulic fluid, controlling the speed of the cylinder’s movement. By modulating the flow, operators can achieve fine control over the positioning of the hydraulic cylinder, enabling precise and accurate movements. 3. Proportional Control: – Hydraulic cylinders can be equipped with proportional control systems, which offer enhanced precision in positioning and control. Proportional control systems utilize electronic feedback and control algorithms to precisely regulate the flow and pressure of the hydraulic fluid. These systems provide accurate and proportional control over the movement of the hydraulic cylinder, allowing for precise positioning at various points along its stroke length. Proportional control enhances the cylinder’s ability to handle complex tasks that require precise movements and control. 4. Position Feedback Sensors: – To achieve precise positioning, hydraulic cylinders often incorporate position feedback sensors. These sensors provide real-time information about the position of the cylinder’s piston rod. Common types of position feedback sensors include potentiometers, linear variable differential transformers (LVDTs), and magnetostrictive sensors. By continuously monitoring the position, the feedback sensors enable closed-loop control, allowing for accurate positioning and control of the hydraulic cylinder. The feedback information is used to adjust the flow of hydraulic fluid to achieve the desired position accurately. 5. Servo Control Systems: – Advanced hydraulic systems employ servo control systems to handle the challenges of precise positioning and control. Servo control systems combine electronic control, position feedback sensors, and proportional control valves to achieve high levels of accuracy and responsiveness. The servo control system continuously compares the desired position with the actual position of the hydraulic cylinder and adjusts the flow of hydraulic fluid to minimize any positional error. This closed-loop control mechanism enables the hydraulic cylinder to maintain precise positioning and control, even under varying loads or external disturbances. 6. Integrated Automation: – Hydraulic cylinders can be integrated into automated systems to achieve precise positioning and control. In such setups, the hydraulic cylinders are controlled by programmable logic controllers (PLCs) or other automation controllers. These controllers receive input signals from various sensors and use pre-programmed logic to command the hydraulic cylinder’s movements. The integration of hydraulic cylinders into automated systems allows for precise and repeatable positioning and control, enabling complex sequences of movements to be executed with high accuracy. 7. Advanced Control Algorithms: – Advancements in control algorithms have also contributed to the precise positioning and control of hydraulic cylinders. These algorithms, such as PID (Proportional-Integral-Derivative) control, adaptive control, and model-based control, enable sophisticated control strategies to be implemented. These algorithms consider factors such as load variations, system dynamics, and environmental conditions to optimize the control of hydraulic cylinders. By employing advanced control algorithms, hydraulic cylinders can compensate for disturbances and achieve precise positioning and control over a wide range of operating conditions. In summary, hydraulic cylinders overcome the challenges of precise positioning and control through the use of fluid power control, control valves, proportional control, position feedback sensors, servo control systems, integrated automation, and advanced control algorithms. By combining these elements, hydraulic cylinders can achieve accurate and controlled movements, enabling precise positioning and control in various applications. These capabilities are essential for industries that require high precision and repeatability in their operations, such as industrial automation, robotics, and material handling. Ensuring Stable Performance of Hydraulic Cylinders Under Fluctuating LoadsHydraulic cylinders are designed to provide stable performance even under fluctuating loads. They achieve this through various mechanisms and features that allow for efficient load control and compensation. Let’s explore how hydraulic cylinders ensure stable performance under fluctuating loads:
In summary, hydraulic cylinders ensure stable performance under fluctuating loads through features such as piston design, cushioning mechanisms, pressure compensation, flow control, feedback systems, and proper sizing and selection. These mechanisms and considerations allow hydraulic cylinders to provide consistent and controlled movement, even in dynamic load conditions, resulting in reliable and stable performance. Can you explain the role and significance of hydraulic cylinders in machinery?Hydraulic cylinders play a crucial role in machinery across various industries. They are essential components that provide controlled and powerful linear motion, enabling the operation of heavy equipment and facilitating numerous tasks. The role and significance of hydraulic cylinders in machinery can be explained in detail as follows: Role of Hydraulic Cylinders: – Conversion of Hydraulic Energy: Hydraulic cylinders convert hydraulic energy, typically in the form of pressurized hydraulic fluid, into linear force and motion. This conversion allows machinery to perform tasks such as lifting, pushing, pulling, clamping, tilting, and controlling various mechanisms. – Generation of Linear Motion: Hydraulic cylinders generate linear motion by utilizing the principles of Pascal’s law. When hydraulic fluid is directed into one side of the cylinder, it applies pressure on the piston, resulting in linear movement of the piston and the attached piston rod. This linear motion can be used to actuate other components within the machinery or directly perform the required task. – Force Generation: Hydraulic cylinders are capable of generating high forces due to the hydraulic pressure applied to the piston. The force output of a hydraulic cylinder depends on the surface area of the piston and the pressure of the hydraulic fluid. This force allows machinery to exert significant power for lifting heavy loads, applying pressure, or overcoming resistance. – Precise Control: Hydraulic cylinders offer precise control over the linear motion and force exerted. By regulating the flow of hydraulic fluid, the speed and direction of the cylinder’s movement can be accurately adjusted. This level of control is crucial in machinery that requires precise positioning, delicate movements, or synchronization of multiple cylinders. – Integration with Hydraulic Systems: Hydraulic cylinders are integral parts of hydraulic systems used in machinery. They work in conjunction with hydraulic pumps, valves, and actuators to create a complete hydraulic circuit. This integration allows for efficient power transmission, control, and coordination of various machine functions. Significance of Hydraulic Cylinders: – Heavy Equipment Operation: Hydraulic cylinders are vital in heavy machinery used in construction, mining, agriculture, material handling, and other industries. They enable the lifting and movement of heavy loads, the operation of attachments, and the performance of tasks that require high force and precision. – Versatility and Adaptability: Hydraulic cylinders are versatile components that can be designed and tailored to meet specific machinery requirements. They can be integrated into various types of equipment and customized based on factors such as force capacity, stroke length, speed, and mounting options. This adaptability makes hydraulic cylinders suitable for diverse applications. – Durability and Reliability: Hydraulic cylinders are built to withstand rigorous operating conditions, including high pressures, heavy loads, and continuous use. They are designed with robust materials, precise machining, and effective sealing systems to ensure durability and reliability over extended periods of operation. – Safety and Load Control: Hydraulic cylinders provide safe and controlled operation in machinery. They offer overload protection mechanisms, such as relief valves, to prevent damage caused by excessive force or pressure. Additionally, hydraulic cylinders allow for precise load control, minimizing the risk of accidents during lifting, lowering, or positioning of heavy loads. – Compact Design: Hydraulic cylinders offer a high power-to-size ratio, allowing for compact machinery design. Their relatively small size compared to the forces they can generate makes them suitable for applications where space is limited or weight restrictions apply. – Energy Efficiency: Hydraulic cylinders contribute to energy efficiency in machinery. The use of hydraulic systems allows for the transfer of power over long distances without significant power losses. Additionally, hydraulic cylinders can incorporate energy-saving features such as load-sensing technology and regenerative circuits, reducing energy consumption. Overall, hydraulic cylinders play a vital role in machinery by providing controlled and powerful linear motion. Their significance lies in their ability to convert hydraulic energy, generate high forces, offer precise control, integrate with hydraulic systems, and facilitate the operation of heavy equipment across various industries. Hydraulic cylinders contribute to increased productivity, safety, and efficiency in machinery applications, making them indispensable components in modern-day engineering.
|